Spaces:
Paused
Paused
| """ | |
| taken from: https://github.com/karpathy/minGPT/ | |
| GPT model: | |
| - the initial stem consists of a combination of token encoding and a positional encoding | |
| - the meat of it is a uniform sequence of Transformer blocks | |
| - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block | |
| - all blocks feed into a central residual pathway similar to resnets | |
| - the final decoder is a linear projection into a vanilla Softmax classifier | |
| """ | |
| import math | |
| import logging | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| import sys | |
| sys.path.insert(0, '.') # nopep8 | |
| from train import instantiate_from_config | |
| logger = logging.getLogger(__name__) | |
| class GPTConfig: | |
| """ base GPT config, params common to all GPT versions """ | |
| embd_pdrop = 0.1 | |
| resid_pdrop = 0.1 | |
| attn_pdrop = 0.1 | |
| def __init__(self, vocab_size, block_size, **kwargs): | |
| self.vocab_size = vocab_size | |
| self.block_size = block_size | |
| for k,v in kwargs.items(): | |
| setattr(self, k, v) | |
| class GPT1Config(GPTConfig): | |
| """ GPT-1 like network roughly 125M params """ | |
| n_layer = 12 | |
| n_head = 12 | |
| n_embd = 768 | |
| class GPT2Config(GPTConfig): | |
| """ GPT-2 like network roughly 1.5B params """ | |
| # TODO | |
| class CausalSelfAttention(nn.Module): | |
| """ | |
| A vanilla multi-head masked self-attention layer with a projection at the end. | |
| It is possible to use torch.nn.MultiheadAttention here but I am including an | |
| explicit implementation here to show that there is nothing too scary here. | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| # key, query, value projections for all heads | |
| self.key = nn.Linear(config.n_embd, config.n_embd) | |
| self.query = nn.Linear(config.n_embd, config.n_embd) | |
| self.value = nn.Linear(config.n_embd, config.n_embd) | |
| # regularization | |
| self.attn_drop = nn.Dropout(config.attn_pdrop) | |
| self.resid_drop = nn.Dropout(config.resid_pdrop) | |
| # output projection | |
| self.proj = nn.Linear(config.n_embd, config.n_embd) | |
| # causal mask to ensure that attention is only applied to the left in the input sequence | |
| mask = torch.tril(torch.ones(config.block_size, | |
| config.block_size)) | |
| if hasattr(config, "n_unmasked"): | |
| mask[:config.n_unmasked, :config.n_unmasked] = 1 | |
| self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size)) | |
| self.n_head = config.n_head | |
| def forward(self, x, layer_past=None): | |
| B, T, C = x.size() | |
| # calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
| k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | |
| att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
| att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) | |
| att = F.softmax(att, dim=-1) | |
| y = self.attn_drop(att) @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
| # output projection | |
| y = self.resid_drop(self.proj(y)) | |
| return y, att | |
| class Block(nn.Module): | |
| """ an unassuming Transformer block """ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln1 = nn.LayerNorm(config.n_embd) | |
| self.ln2 = nn.LayerNorm(config.n_embd) | |
| self.attn = CausalSelfAttention(config) | |
| self.mlp = nn.Sequential( | |
| nn.Linear(config.n_embd, 4 * config.n_embd), | |
| nn.GELU(), # nice | |
| nn.Linear(4 * config.n_embd, config.n_embd), | |
| nn.Dropout(config.resid_pdrop), | |
| ) | |
| def forward(self, x): | |
| # x = x + self.attn(self.ln1(x)) | |
| # x is a tuple (x, attention) | |
| x, _ = x | |
| res = x | |
| x = self.ln1(x) | |
| x, att = self.attn(x) | |
| x = res + x | |
| x = x + self.mlp(self.ln2(x)) | |
| return x, att | |
| class GPT(nn.Module): | |
| """ the full GPT language model, with a context size of block_size """ | |
| def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256, | |
| embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): | |
| super().__init__() | |
| config = GPTConfig(vocab_size=vocab_size, block_size=block_size, | |
| embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, | |
| n_layer=n_layer, n_head=n_head, n_embd=n_embd, | |
| n_unmasked=n_unmasked) | |
| # input embedding stem | |
| self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) | |
| self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) | |
| self.drop = nn.Dropout(config.embd_pdrop) | |
| # transformer | |
| self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) | |
| # decoder head | |
| self.ln_f = nn.LayerNorm(config.n_embd) | |
| self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.block_size = config.block_size | |
| self.apply(self._init_weights) | |
| self.config = config | |
| logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) | |
| def get_block_size(self): | |
| return self.block_size | |
| def _init_weights(self, module): | |
| if isinstance(module, (nn.Linear, nn.Embedding)): | |
| module.weight.data.normal_(mean=0.0, std=0.02) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| def forward(self, idx, embeddings=None, targets=None): | |
| # forward the GPT model | |
| token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector | |
| if embeddings is not None: # prepend explicit embeddings | |
| token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) | |
| t = token_embeddings.shape[1] | |
| assert t <= self.block_size, "Cannot forward, model block size is exhausted." | |
| position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector | |
| x = self.drop(token_embeddings + position_embeddings) | |
| # returns only last layer attention | |
| # giving tuple (x, None) just because Sequential takes a single input but outputs two (x, atttention). | |
| # att is (B, H, T, T) | |
| x, att = self.blocks((x, None)) | |
| x = self.ln_f(x) | |
| logits = self.head(x) | |
| # if we are given some desired targets also calculate the loss | |
| loss = None | |
| if targets is not None: | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
| return logits, loss, att | |
| class DummyGPT(nn.Module): | |
| # for debugging | |
| def __init__(self, add_value=1): | |
| super().__init__() | |
| self.add_value = add_value | |
| def forward(self, idx): | |
| raise NotImplementedError('Model should output attention') | |
| return idx + self.add_value, None | |
| class CodeGPT(nn.Module): | |
| """Takes in semi-embeddings""" | |
| def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256, | |
| embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): | |
| super().__init__() | |
| config = GPTConfig(vocab_size=vocab_size, block_size=block_size, | |
| embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, | |
| n_layer=n_layer, n_head=n_head, n_embd=n_embd, | |
| n_unmasked=n_unmasked) | |
| # input embedding stem | |
| self.tok_emb = nn.Linear(in_channels, config.n_embd) | |
| self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) | |
| self.drop = nn.Dropout(config.embd_pdrop) | |
| # transformer | |
| self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) | |
| # decoder head | |
| self.ln_f = nn.LayerNorm(config.n_embd) | |
| self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.block_size = config.block_size | |
| self.apply(self._init_weights) | |
| self.config = config | |
| logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) | |
| def get_block_size(self): | |
| return self.block_size | |
| def _init_weights(self, module): | |
| if isinstance(module, (nn.Linear, nn.Embedding)): | |
| module.weight.data.normal_(mean=0.0, std=0.02) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| elif isinstance(module, (nn.Conv1d, nn.Conv2d)): | |
| torch.nn.init.xavier_uniform(module.weight) | |
| if module.bias is not None: | |
| module.bias.data.fill_(0.01) | |
| def forward(self, idx, embeddings=None, targets=None): | |
| raise NotImplementedError('Model should output attention') | |
| # forward the GPT model | |
| token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector | |
| if embeddings is not None: # prepend explicit embeddings | |
| token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) | |
| t = token_embeddings.shape[1] | |
| assert t <= self.block_size, "Cannot forward, model block size is exhausted." | |
| position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector | |
| x = self.drop(token_embeddings + position_embeddings) | |
| x = self.blocks(x) | |
| x = self.ln_f(x) | |
| logits = self.head(x) | |
| # if we are given some desired targets also calculate the loss | |
| loss = None | |
| if targets is not None: | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
| return logits, loss | |
| class GPTFeats(GPT): | |
| def __init__(self, feat_embedding_config, GPT_config): | |
| super().__init__(**GPT_config) | |
| # patching the config by removing the default parameters for Conv1d | |
| if feat_embedding_config.target.split('.')[-1] in ['LSTM', 'GRU']: | |
| for p in ['in_channels', 'out_channels', 'padding', 'kernel_size']: | |
| if p in feat_embedding_config.params: | |
| feat_embedding_config.params.pop(p) | |
| self.embedder = instantiate_from_config(config=feat_embedding_config) | |
| if isinstance(self.embedder, nn.Linear): | |
| print('Checkout cond_transformer.configure_optimizers. Make sure not to use decay with Linear') | |
| def forward(self, idx, feats): | |
| if isinstance(self.embedder, nn.Linear): | |
| feats = feats.permute(0, 2, 1) | |
| feats = self.embedder(feats) | |
| elif isinstance(self.embedder, (nn.LSTM, nn.GRU)): | |
| feats = feats.permute(0, 2, 1) | |
| feats, _ = self.embedder(feats) | |
| elif isinstance(self.embedder, (nn.Conv1d, nn.Identity)): | |
| # (B, D', T) <- (B, D, T) | |
| feats = self.embedder(feats) | |
| # (B, T, D') <- (B, T, D) | |
| feats = feats.permute(0, 2, 1) | |
| else: | |
| raise NotImplementedError | |
| # calling forward from super | |
| return super().forward(idx, embeddings=feats) | |
| class GPTFeatsPosEnc(GPT): | |
| def __init__(self, feat_embedding_config, GPT_config, PosEnc_config): | |
| super().__init__(**GPT_config) | |
| # patching the config by removing the default parameters for Conv1d | |
| if feat_embedding_config.target.split('.')[-1] in ['LSTM', 'GRU']: | |
| for p in ['in_channels', 'out_channels', 'padding', 'kernel_size']: | |
| if p in feat_embedding_config.params: | |
| feat_embedding_config.params.pop(p) | |
| self.embedder = instantiate_from_config(config=feat_embedding_config) | |
| self.pos_emb_vis = nn.Parameter(torch.zeros(1, PosEnc_config['block_size_v'], PosEnc_config['n_embd'])) | |
| self.pos_emb_aud = nn.Parameter(torch.zeros(1, PosEnc_config['block_size_a'], PosEnc_config['n_embd'])) | |
| if isinstance(self.embedder, nn.Linear): | |
| print('Checkout cond_transformer.configure_optimizers. Make sure not to use decay with Linear') | |
| def foward(self, idx, feats): | |
| if isinstance(self.embedder, nn.Linear): | |
| feats = feats.permute(0, 2, 1) | |
| feats = self.embedder(feats) | |
| elif isinstance(self.embedder, (nn.LSTM, nn.GRU)): | |
| feats = feats.permute(0, 2, 1) | |
| feats, _ = self.embedder(feats) | |
| elif isinstance(self.embedder, (nn.Conv1d, nn.Identity)): | |
| # (B, D', T) <- (B, D, T) | |
| feats = self.embedder(feats) | |
| # (B, T, D') <- (B, T, D) | |
| feats = feats.permute(0, 2, 1) | |
| else: | |
| raise NotImplementedError | |
| # calling forward from super | |
| # forward the GPT model | |
| token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector | |
| if feats is not None: # prepend explicit feats | |
| token_embeddings = torch.cat((feats, token_embeddings), dim=1) | |
| t = token_embeddings.shape[1] | |
| assert t <= self.block_size, "Cannot forward, model block size is exhausted." | |
| vis_t = self.pos_emb_vis.shape[1] | |
| position_embeddings = torch.cat([self.pos_emb_vis, self.pos_emb_aud[:, :t-vis_t, :]]) | |
| x = self.drop(token_embeddings + position_embeddings) | |
| # returns only last layer attention | |
| # giving tuple (x, None) just because Sequential takes a single input but outputs two (x, atttention). | |
| # att is (B, H, T, T) | |
| x, att = self.blocks((x, None)) | |
| x = self.ln_f(x) | |
| logits = self.head(x) | |
| # if we are given some desired targets also calculate the loss | |
| loss = None | |
| return logits, loss, att | |
| class GPTClass(GPT): | |
| def __init__(self, token_embedding_config, GPT_config): | |
| super().__init__(**GPT_config) | |
| self.embedder = instantiate_from_config(config=token_embedding_config) | |
| def forward(self, idx, token): | |
| token = self.embedder(token) | |
| # calling forward from super | |
| return super().forward(idx, embeddings=token) | |
| class GPTFeatsClass(GPT): | |
| def __init__(self, feat_embedding_config, token_embedding_config, GPT_config): | |
| super().__init__(**GPT_config) | |
| # patching the config by removing the default parameters for Conv1d | |
| if feat_embedding_config.target.split('.')[-1] in ['LSTM', 'GRU']: | |
| for p in ['in_channels', 'out_channels', 'padding', 'kernel_size']: | |
| if p in feat_embedding_config.params: | |
| feat_embedding_config.params.pop(p) | |
| self.feat_embedder = instantiate_from_config(config=feat_embedding_config) | |
| self.cls_embedder = instantiate_from_config(config=token_embedding_config) | |
| if isinstance(self.feat_embedder, nn.Linear): | |
| print('Checkout cond_transformer.configure_optimizers. Make sure not to use decay with Linear') | |
| def forward(self, idx, feats_token_dict: dict): | |
| feats = feats_token_dict['feature'] | |
| token = feats_token_dict['target'] | |
| # Features. Output size: (B, T, D') | |
| if isinstance(self.feat_embedder, nn.Linear): | |
| feats = feats.permute(0, 2, 1) | |
| feats = self.feat_embedder(feats) | |
| elif isinstance(self.feat_embedder, (nn.LSTM, nn.GRU)): | |
| feats = feats.permute(0, 2, 1) | |
| feats, _ = self.feat_embedder(feats) | |
| elif isinstance(self.feat_embedder, (nn.Conv1d, nn.Identity)): | |
| # (B, D', T) <- (B, D, T) | |
| feats = self.feat_embedder(feats) | |
| # (B, T, D') <- (B, T, D) | |
| feats = feats.permute(0, 2, 1) | |
| else: | |
| raise NotImplementedError | |
| # Class. Output size: (B, 1, D') | |
| token = self.cls_embedder(token) | |
| # Concat | |
| condition_emb = torch.cat([feats, token], dim=1) | |
| # calling forward from super | |
| return super().forward(idx, embeddings=condition_emb) | |
| #### sampling utils | |
| def top_k_logits(logits, k): | |
| v, ix = torch.topk(logits, k) | |
| out = logits.clone() | |
| out[out < v[:, [-1]]] = -float('Inf') | |
| return out | |
| def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): | |
| """ | |
| take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in | |
| the sequence, feeding the predictions back into the model each time. Clearly the sampling | |
| has quadratic complexity unlike an RNN that is only linear, and has a finite context window | |
| of block_size, unlike an RNN that has an infinite context window. | |
| """ | |
| block_size = model.get_block_size() | |
| model.eval() | |
| for k in range(steps): | |
| x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed | |
| raise NotImplementedError('v-iashin: the model outputs (logits, loss, attention)') | |
| logits, _ = model(x_cond) | |
| # pluck the logits at the final step and scale by temperature | |
| logits = logits[:, -1, :] / temperature | |
| # optionally crop probabilities to only the top k options | |
| if top_k is not None: | |
| logits = top_k_logits(logits, top_k) | |
| # apply softmax to convert to probabilities | |
| probs = F.softmax(logits, dim=-1) | |
| # sample from the distribution or take the most likely | |
| if sample: | |
| ix = torch.multinomial(probs, num_samples=1) | |
| else: | |
| _, ix = torch.topk(probs, k=1, dim=-1) | |
| # append to the sequence and continue | |
| x = torch.cat((x, ix), dim=1) | |
| return x | |
| #### clustering utils | |
| class KMeans(nn.Module): | |
| def __init__(self, ncluster=512, nc=3, niter=10): | |
| super().__init__() | |
| self.ncluster = ncluster | |
| self.nc = nc | |
| self.niter = niter | |
| self.shape = (3,32,32) | |
| self.register_buffer("C", torch.zeros(self.ncluster,nc)) | |
| self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) | |
| def is_initialized(self): | |
| return self.initialized.item() == 1 | |
| def initialize(self, x): | |
| N, D = x.shape | |
| assert D == self.nc, D | |
| c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random | |
| for i in range(self.niter): | |
| # assign all pixels to the closest codebook element | |
| a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1) | |
| # move each codebook element to be the mean of the pixels that assigned to it | |
| c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)]) | |
| # re-assign any poorly positioned codebook elements | |
| nanix = torch.any(torch.isnan(c), dim=1) | |
| ndead = nanix.sum().item() | |
| print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead)) | |
| c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters | |
| self.C.copy_(c) | |
| self.initialized.fill_(1) | |
| def forward(self, x, reverse=False, shape=None): | |
| if not reverse: | |
| # flatten | |
| bs,c,h,w = x.shape | |
| assert c == self.nc | |
| x = x.reshape(bs,c,h*w,1) | |
| C = self.C.permute(1,0) | |
| C = C.reshape(1,c,1,self.ncluster) | |
| a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices | |
| return a | |
| else: | |
| # flatten | |
| bs, HW = x.shape | |
| """ | |
| c = self.C.reshape( 1, self.nc, 1, self.ncluster) | |
| c = c[bs*[0],:,:,:] | |
| c = c[:,:,HW*[0],:] | |
| x = x.reshape(bs, 1, HW, 1) | |
| x = x[:,3*[0],:,:] | |
| x = torch.gather(c, dim=3, index=x) | |
| """ | |
| x = self.C[x] | |
| x = x.permute(0,2,1) | |
| shape = shape if shape is not None else self.shape | |
| x = x.reshape(bs, *shape) | |
| return x | |
| if __name__ == '__main__': | |
| import torch | |
| from omegaconf import OmegaConf | |
| import numpy as np | |
| from tqdm import tqdm | |
| device = torch.device('cuda:2') | |
| torch.cuda.set_device(device) | |
| cfg = OmegaConf.load('./configs/vggsound_transformer.yaml') | |
| model = instantiate_from_config(cfg.model.params.transformer_config) | |
| model = model.to(device) | |
| mel_num = cfg.data.params.mel_num | |
| spec_crop_len = cfg.data.params.spec_crop_len | |
| feat_depth = cfg.data.params.feat_depth | |
| feat_crop_len = cfg.data.params.feat_crop_len | |
| gcd = np.gcd(mel_num, spec_crop_len) | |
| z_idx_size = (2, int(mel_num / gcd) * int(spec_crop_len / gcd)) | |
| for i in tqdm(range(300)): | |
| z_indices = torch.randint(0, cfg.model.params.transformer_config.params.GPT_config.vocab_size, z_idx_size).to(device) | |
| c = torch.rand(2, feat_depth, feat_crop_len).to(device) | |
| logits, loss, att = model(z_indices[:, :-1], feats=c) | |