Spaces:
Running
on
Zero
Running
on
Zero
| # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
| # | |
| # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
| # property and proprietary rights in and to this material, related | |
| # documentation and any modifications thereto. Any use, reproduction, | |
| # disclosure or distribution of this material and related documentation | |
| # without an express license agreement from NVIDIA CORPORATION or | |
| # its affiliates is strictly prohibited. | |
| """Streaming images and labels from datasets created with dataset_tool.py.""" | |
| import cv2 | |
| import os | |
| import numpy as np | |
| import zipfile | |
| import PIL.Image | |
| import json | |
| import torch | |
| import dnnlib | |
| from torchvision import transforms | |
| from pdb import set_trace as st | |
| from .shapenet import LMDBDataset_MV_Compressed, decompress_array | |
| try: | |
| import pyspng | |
| except ImportError: | |
| pyspng = None | |
| #---------------------------------------------------------------------------- | |
| # copide from eg3d/train.py | |
| def init_dataset_kwargs(data, | |
| class_name='datasets.eg3d_dataset.ImageFolderDataset', | |
| reso_gt=128): | |
| # try: | |
| # if data == 'None': | |
| # dataset_kwargs = dnnlib.EasyDict({}) # | |
| # dataset_kwargs.name = 'eg3d_dataset' | |
| # dataset_kwargs.resolution = 128 | |
| # dataset_kwargs.use_labels = False | |
| # dataset_kwargs.max_size = 70000 | |
| # return dataset_kwargs, 'eg3d_dataset' | |
| dataset_kwargs = dnnlib.EasyDict(class_name=class_name, | |
| reso_gt=reso_gt, | |
| path=data, | |
| use_labels=True, | |
| max_size=None, | |
| xflip=False) | |
| dataset_obj = dnnlib.util.construct_class_by_name( | |
| **dataset_kwargs) # Subclass of training.dataset.Dataset. | |
| dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution. | |
| dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels. | |
| dataset_kwargs.max_size = len( | |
| dataset_obj) # Be explicit about dataset size. | |
| return dataset_kwargs, dataset_obj.name | |
| # except IOError as err: | |
| # raise click.ClickException(f'--data: {err}') | |
| class Dataset(torch.utils.data.Dataset): | |
| def __init__( | |
| self, | |
| name, # Name of the dataset. | |
| raw_shape, # Shape of the raw image data (NCHW). | |
| reso_gt=128, | |
| max_size=None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip. | |
| use_labels=False, # Enable conditioning labels? False = label dimension is zero. | |
| xflip=False, # Artificially double the size of the dataset via x-flips. Applied after max_size. | |
| random_seed=0, # Random seed to use when applying max_size. | |
| ): | |
| self._name = name | |
| self._raw_shape = list(raw_shape) | |
| self._use_labels = use_labels | |
| self._raw_labels = None | |
| self._label_shape = None | |
| # self.reso_gt = 128 | |
| self.reso_gt = reso_gt # ! hard coded | |
| self.reso_encoder = 224 | |
| # Apply max_size. | |
| self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64) | |
| # self._raw_idx = np.arange(self.__len__(), dtype=np.int64) | |
| if (max_size is not None) and (self._raw_idx.size > max_size): | |
| np.random.RandomState(random_seed).shuffle(self._raw_idx) | |
| self._raw_idx = np.sort(self._raw_idx[:max_size]) | |
| # Apply xflip. | |
| self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8) | |
| if xflip: | |
| self._raw_idx = np.tile(self._raw_idx, 2) | |
| self._xflip = np.concatenate( | |
| [self._xflip, np.ones_like(self._xflip)]) | |
| # dino encoder normalizer | |
| self.normalize_for_encoder_input = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
| transforms.Resize(size=(self.reso_encoder, self.reso_encoder), | |
| antialias=True), # type: ignore | |
| ]) | |
| self.normalize_for_gt = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
| transforms.Resize(size=(self.reso_gt, self.reso_gt), | |
| antialias=True), # type: ignore | |
| ]) | |
| def _get_raw_labels(self): | |
| if self._raw_labels is None: | |
| self._raw_labels = self._load_raw_labels( | |
| ) if self._use_labels else None | |
| if self._raw_labels is None: | |
| self._raw_labels = np.zeros([self._raw_shape[0], 0], | |
| dtype=np.float32) | |
| assert isinstance(self._raw_labels, np.ndarray) | |
| # assert self._raw_labels.shape[0] == self._raw_shape[0] | |
| assert self._raw_labels.dtype in [np.float32, np.int64] | |
| if self._raw_labels.dtype == np.int64: | |
| assert self._raw_labels.ndim == 1 | |
| assert np.all(self._raw_labels >= 0) | |
| self._raw_labels_std = self._raw_labels.std(0) | |
| return self._raw_labels | |
| def close(self): # to be overridden by subclass | |
| pass | |
| def _load_raw_image(self, raw_idx): # to be overridden by subclass | |
| raise NotImplementedError | |
| def _load_raw_labels(self): # to be overridden by subclass | |
| raise NotImplementedError | |
| def __getstate__(self): | |
| return dict(self.__dict__, _raw_labels=None) | |
| def __del__(self): | |
| try: | |
| self.close() | |
| except: | |
| pass | |
| def __len__(self): | |
| return self._raw_idx.size | |
| # return self._get_raw_labels().shape[0] | |
| def __getitem__(self, idx): | |
| # print(self._raw_idx[idx], idx) | |
| matte = self._load_raw_matte(self._raw_idx[idx]) | |
| assert isinstance(matte, np.ndarray) | |
| assert list(matte.shape)[1:] == self.image_shape[1:] | |
| if self._xflip[idx]: | |
| assert matte.ndim == 1 # CHW | |
| matte = matte[:, :, ::-1] | |
| # matte_orig = matte.copy().astype(np.float32) / 255 | |
| matte_orig = matte.copy().astype(np.float32) # segmentation version | |
| # assert matte_orig.max() == 1 | |
| matte = np.transpose(matte, | |
| # (1, 2, 0)).astype(np.float32) / 255 # [0,1] range | |
| (1, 2, 0)).astype(np.float32) # [0,1] range | |
| matte = cv2.resize(matte, (self.reso_gt, self.reso_gt), | |
| interpolation=cv2.INTER_NEAREST) | |
| assert matte.min() >= 0 and matte.max( | |
| ) <= 1, f'{matte.min(), matte.max()}' | |
| if matte.ndim == 3: # H, W | |
| matte = matte[..., 0] | |
| image = self._load_raw_image(self._raw_idx[idx]) | |
| assert isinstance(image, np.ndarray) | |
| assert list(image.shape) == self.image_shape | |
| assert image.dtype == np.uint8 | |
| if self._xflip[idx]: | |
| assert image.ndim == 3 # CHW | |
| image = image[:, :, ::-1] | |
| # blending | |
| # blending = True | |
| blending = False | |
| if blending: | |
| image = image * matte_orig + (1 - matte_orig) * cv2.GaussianBlur( | |
| image, (5, 5), cv2.BORDER_DEFAULT) | |
| # image = image * matte_orig | |
| image = np.transpose(image, (1, 2, 0)).astype( | |
| np.float32 | |
| ) / 255 # H W C for torchvision process, normalize to [0,1] | |
| image_sr = torch.from_numpy(image)[..., :3].permute( | |
| 2, 0, 1) * 2 - 1 # normalize to [-1,1] | |
| image_to_encoder = self.normalize_for_encoder_input(image) | |
| image_gt = cv2.resize(image, (self.reso_gt, self.reso_gt), | |
| interpolation=cv2.INTER_AREA) | |
| image_gt = torch.from_numpy(image_gt)[..., :3].permute( | |
| 2, 0, 1) * 2 - 1 # normalize to [-1,1] | |
| return dict( | |
| c=self.get_label(idx), | |
| img_to_encoder=image_to_encoder, # 224 | |
| img_sr=image_sr, # 512 | |
| img=image_gt, # [-1,1] range | |
| # depth=torch.zeros_like(image_gt)[0, ...] # type: ignore | |
| depth=matte, | |
| depth_mask=matte, | |
| # depth_mask=matte > 0, | |
| # alpha=matte, | |
| ) # return dict here | |
| def get_label(self, idx): | |
| label = self._get_raw_labels()[self._raw_idx[idx]] | |
| if label.dtype == np.int64: | |
| onehot = np.zeros(self.label_shape, dtype=np.float32) | |
| onehot[label] = 1 | |
| label = onehot | |
| return label.copy() | |
| def get_details(self, idx): | |
| d = dnnlib.EasyDict() | |
| d.raw_idx = int(self._raw_idx[idx]) | |
| d.xflip = (int(self._xflip[idx]) != 0) | |
| d.raw_label = self._get_raw_labels()[d.raw_idx].copy() | |
| return d | |
| def get_label_std(self): | |
| return self._raw_labels_std | |
| def name(self): | |
| return self._name | |
| def image_shape(self): | |
| return list(self._raw_shape[1:]) | |
| def num_channels(self): | |
| assert len(self.image_shape) == 3 # CHW | |
| return self.image_shape[0] | |
| def resolution(self): | |
| assert len(self.image_shape) == 3 # CHW | |
| assert self.image_shape[1] == self.image_shape[2] | |
| return self.image_shape[1] | |
| def label_shape(self): | |
| if self._label_shape is None: | |
| raw_labels = self._get_raw_labels() | |
| if raw_labels.dtype == np.int64: | |
| self._label_shape = [int(np.max(raw_labels)) + 1] | |
| else: | |
| self._label_shape = raw_labels.shape[1:] | |
| return list(self._label_shape) | |
| def label_dim(self): | |
| assert len(self.label_shape) == 1 | |
| return self.label_shape[0] | |
| def has_labels(self): | |
| return any(x != 0 for x in self.label_shape) | |
| def has_onehot_labels(self): | |
| return self._get_raw_labels().dtype == np.int64 | |
| #---------------------------------------------------------------------------- | |
| class ImageFolderDataset(Dataset): | |
| def __init__( | |
| self, | |
| path, # Path to directory or zip. | |
| resolution=None, # Ensure specific resolution, None = highest available. | |
| reso_gt=128, | |
| **super_kwargs, # Additional arguments for the Dataset base class. | |
| ): | |
| self._path = path | |
| # self._matte_path = path.replace('unzipped_ffhq_512', | |
| # 'unzipped_ffhq_matte') | |
| self._matte_path = path.replace('unzipped_ffhq_512', | |
| 'ffhq_512_seg') | |
| self._zipfile = None | |
| if os.path.isdir(self._path): | |
| self._type = 'dir' | |
| self._all_fnames = { | |
| os.path.relpath(os.path.join(root, fname), start=self._path) | |
| for root, _dirs, files in os.walk(self._path) | |
| for fname in files | |
| } | |
| elif self._file_ext(self._path) == '.zip': | |
| self._type = 'zip' | |
| self._all_fnames = set(self._get_zipfile().namelist()) | |
| else: | |
| raise IOError('Path must point to a directory or zip') | |
| PIL.Image.init() | |
| self._image_fnames = sorted( | |
| fname for fname in self._all_fnames | |
| if self._file_ext(fname) in PIL.Image.EXTENSION) | |
| if len(self._image_fnames) == 0: | |
| raise IOError('No image files found in the specified path') | |
| name = os.path.splitext(os.path.basename(self._path))[0] | |
| raw_shape = [len(self._image_fnames)] + list( | |
| self._load_raw_image(0).shape) | |
| # raw_shape = [len(self._image_fnames)] + list( | |
| # self._load_raw_image(0).shape) | |
| if resolution is not None and (raw_shape[2] != resolution | |
| or raw_shape[3] != resolution): | |
| raise IOError('Image files do not match the specified resolution') | |
| super().__init__(name=name, | |
| raw_shape=raw_shape, | |
| reso_gt=reso_gt, | |
| **super_kwargs) | |
| def _file_ext(fname): | |
| return os.path.splitext(fname)[1].lower() | |
| def _get_zipfile(self): | |
| assert self._type == 'zip' | |
| if self._zipfile is None: | |
| self._zipfile = zipfile.ZipFile(self._path) | |
| return self._zipfile | |
| def _open_file(self, fname): | |
| if self._type == 'dir': | |
| return open(os.path.join(self._path, fname), 'rb') | |
| if self._type == 'zip': | |
| return self._get_zipfile().open(fname, 'r') | |
| return None | |
| def _open_matte_file(self, fname): | |
| if self._type == 'dir': | |
| return open(os.path.join(self._matte_path, fname), 'rb') | |
| # if self._type == 'zip': | |
| # return self._get_zipfile().open(fname, 'r') | |
| # return None | |
| def close(self): | |
| try: | |
| if self._zipfile is not None: | |
| self._zipfile.close() | |
| finally: | |
| self._zipfile = None | |
| def __getstate__(self): | |
| return dict(super().__getstate__(), _zipfile=None) | |
| def _load_raw_image(self, raw_idx): | |
| fname = self._image_fnames[raw_idx] | |
| with self._open_file(fname) as f: | |
| if pyspng is not None and self._file_ext(fname) == '.png': | |
| image = pyspng.load(f.read()) | |
| else: | |
| image = np.array(PIL.Image.open(f)) | |
| if image.ndim == 2: | |
| image = image[:, :, np.newaxis] # HW => HWC | |
| image = image.transpose(2, 0, 1) # HWC => CHW | |
| return image | |
| def _load_raw_matte(self, raw_idx): | |
| # ! from seg version | |
| fname = self._image_fnames[raw_idx] | |
| with self._open_matte_file(fname) as f: | |
| if pyspng is not None and self._file_ext(fname) == '.png': | |
| image = pyspng.load(f.read()) | |
| else: | |
| image = np.array(PIL.Image.open(f)) | |
| # if image.max() != 1: | |
| image = (image > 0).astype(np.float32) # process segmentation | |
| if image.ndim == 2: | |
| image = image[:, :, np.newaxis] # HW => HWC | |
| image = image.transpose(2, 0, 1) # HWC => CHW | |
| return image | |
| def _load_raw_matte_orig(self, raw_idx): | |
| fname = self._image_fnames[raw_idx] | |
| with self._open_matte_file(fname) as f: | |
| if pyspng is not None and self._file_ext(fname) == '.png': | |
| image = pyspng.load(f.read()) | |
| else: | |
| image = np.array(PIL.Image.open(f)) | |
| st() # process segmentation | |
| if image.ndim == 2: | |
| image = image[:, :, np.newaxis] # HW => HWC | |
| image = image.transpose(2, 0, 1) # HWC => CHW | |
| return image | |
| def _load_raw_labels(self): | |
| fname = 'dataset.json' | |
| if fname not in self._all_fnames: | |
| return None | |
| with self._open_file(fname) as f: | |
| # st() | |
| labels = json.load(f)['labels'] | |
| if labels is None: | |
| return None | |
| labels = dict(labels) | |
| labels_ = [] | |
| for fname, _ in labels.items(): | |
| # if 'mirror' not in fname: | |
| labels_.append(labels[fname]) | |
| labels = labels_ | |
| # ! | |
| # labels = [ | |
| # labels[fname.replace('\\', '/')] for fname in self._image_fnames | |
| # ] | |
| labels = np.array(labels) | |
| labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim]) | |
| self._raw_labels = labels | |
| return labels | |
| #---------------------------------------------------------------------------- | |
| # class ImageFolderDatasetUnzipped(ImageFolderDataset): | |
| # def __init__(self, path, resolution=None, **super_kwargs): | |
| # super().__init__(path, resolution, **super_kwargs) | |
| # class ImageFolderDatasetPose(ImageFolderDataset): | |
| # def __init__( | |
| # self, | |
| # path, # Path to directory or zip. | |
| # resolution=None, # Ensure specific resolution, None = highest available. | |
| # **super_kwargs, # Additional arguments for the Dataset base class. | |
| # ): | |
| # super().__init__(path, resolution, **super_kwargs) | |
| # # only return labels | |
| # def __len__(self): | |
| # return self._raw_idx.size | |
| # # return self._get_raw_labels().shape[0] | |
| # def __getitem__(self, idx): | |
| # # image = self._load_raw_image(self._raw_idx[idx]) | |
| # # assert isinstance(image, np.ndarray) | |
| # # assert list(image.shape) == self.image_shape | |
| # # assert image.dtype == np.uint8 | |
| # # if self._xflip[idx]: | |
| # # assert image.ndim == 3 # CHW | |
| # # image = image[:, :, ::-1] | |
| # return dict(c=self.get_label(idx), ) # return dict here | |
| class ImageFolderDatasetLMDB(ImageFolderDataset): | |
| def __init__(self, path, resolution=None, reso_gt=128, **super_kwargs): | |
| super().__init__(path, resolution, reso_gt, **super_kwargs) | |
| def __getitem__(self, idx): | |
| # print(self._raw_idx[idx], idx) | |
| matte = self._load_raw_matte(self._raw_idx[idx]) | |
| assert isinstance(matte, np.ndarray) | |
| assert list(matte.shape)[1:] == self.image_shape[1:] | |
| if self._xflip[idx]: | |
| assert matte.ndim == 1 # CHW | |
| matte = matte[:, :, ::-1] | |
| # matte_orig = matte.copy().astype(np.float32) / 255 | |
| matte_orig = matte.copy().astype(np.float32) # segmentation version | |
| assert matte_orig.max() <= 1 # some ffhq images are dirty, so may be all zero | |
| matte = np.transpose(matte, | |
| # (1, 2, 0)).astype(np.float32) / 255 # [0,1] range | |
| (1, 2, 0)).astype(np.float32) # [0,1] range | |
| # ! load 512 matte | |
| # matte = cv2.resize(matte, (self.reso_gt, self.reso_gt), | |
| # interpolation=cv2.INTER_NEAREST) | |
| assert matte.min() >= 0 and matte.max( | |
| ) <= 1, f'{matte.min(), matte.max()}' | |
| if matte.ndim == 3: # H, W | |
| matte = matte[..., 0] | |
| image = self._load_raw_image(self._raw_idx[idx]) | |
| assert isinstance(image, np.ndarray) | |
| assert list(image.shape) == self.image_shape | |
| assert image.dtype == np.uint8 | |
| if self._xflip[idx]: | |
| assert image.ndim == 3 # CHW | |
| image = image[:, :, ::-1] | |
| # blending | |
| # blending = True | |
| # blending = False | |
| # if blending: | |
| # image = image * matte_orig + (1 - matte_orig) * cv2.GaussianBlur( | |
| # image, (5, 5), cv2.BORDER_DEFAULT) | |
| # image = image * matte_orig | |
| # image = np.transpose(image, (1, 2, 0)).astype( | |
| # np.float32 | |
| # ) / 255 # H W C for torchvision process, normalize to [0,1] | |
| # image_sr = torch.from_numpy(image)[..., :3].permute( | |
| # 2, 0, 1) * 2 - 1 # normalize to [-1,1] | |
| # image_to_encoder = self.normalize_for_encoder_input(image) | |
| # image_gt = cv2.resize(image, (self.reso_gt, self.reso_gt), | |
| # interpolation=cv2.INTER_AREA) | |
| # image_gt = torch.from_numpy(image_gt)[..., :3].permute( | |
| # 2, 0, 1) * 2 - 1 # normalize to [-1,1] | |
| return dict( | |
| c=self.get_label(idx), | |
| # img_to_encoder=image_to_encoder, # 224 | |
| # img_sr=image_sr, # 512 | |
| img=image, # [-1,1] range | |
| # depth=torch.zeros_like(image_gt)[0, ...] # type: ignore | |
| # depth=matte, | |
| depth_mask=matte, | |
| ) # return dict here | |
| class LMDBDataset_MV_Compressed_eg3d(LMDBDataset_MV_Compressed): | |
| def __init__(self, | |
| lmdb_path, | |
| reso, | |
| reso_encoder, | |
| imgnet_normalize=True, | |
| **kwargs): | |
| super().__init__(lmdb_path, reso, reso_encoder, imgnet_normalize, | |
| **kwargs) | |
| self.normalize_for_encoder_input = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
| transforms.Resize(size=(self.reso_encoder, self.reso_encoder), | |
| antialias=True), # type: ignore | |
| ]) | |
| self.normalize_for_gt = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
| transforms.Resize(size=(self.reso, self.reso), | |
| antialias=True), # type: ignore | |
| ]) | |
| def __getitem__(self, idx): | |
| # sample = super(LMDBDataset).__getitem__(idx) | |
| # do gzip uncompress online | |
| with self.env.begin(write=False) as txn: | |
| img_key = f'{idx}-img'.encode('utf-8') | |
| image = self.load_image_fn(txn.get(img_key)) | |
| depth_key = f'{idx}-depth_mask'.encode('utf-8') | |
| # depth = decompress_array(txn.get(depth_key), (512,512), np.float32) | |
| depth = decompress_array(txn.get(depth_key), (64,64), np.float32) | |
| c_key = f'{idx}-c'.encode('utf-8') | |
| c = decompress_array(txn.get(c_key), (25, ), np.float32) | |
| # ! post processing, e.g., normalizing | |
| depth = cv2.resize(depth, (self.reso, self.reso), | |
| interpolation=cv2.INTER_NEAREST) | |
| image = np.transpose(image, (1, 2, 0)).astype( | |
| np.float32 | |
| ) / 255 # H W C for torchvision process, normalize to [0,1] | |
| image_sr = torch.from_numpy(image)[..., :3].permute( | |
| 2, 0, 1) * 2 - 1 # normalize to [-1,1] | |
| image_to_encoder = self.normalize_for_encoder_input(image) | |
| image_gt = cv2.resize(image, (self.reso, self.reso), | |
| interpolation=cv2.INTER_AREA) | |
| image_gt = torch.from_numpy(image_gt)[..., :3].permute( | |
| 2, 0, 1) * 2 - 1 # normalize to [-1,1] | |
| return { | |
| 'img_to_encoder': image_to_encoder, # 224 | |
| 'img_sr': image_sr, # 512 | |
| 'img': image_gt, # [-1,1] range | |
| 'c': c, | |
| 'depth': depth, | |
| 'depth_mask': depth, | |
| } | |