Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| import random | |
| from PIL import Image | |
| import blobfile as bf | |
| from mpi4py import MPI | |
| import numpy as np | |
| from torch.utils.data import DataLoader, Dataset | |
| def load_data( | |
| *, | |
| data_dir, | |
| batch_size, | |
| image_size, | |
| class_cond=False, | |
| deterministic=False, | |
| random_crop=False, | |
| random_flip=True, | |
| ): | |
| """ | |
| For a dataset, create a generator over (images, kwargs) pairs. | |
| Each images is an NCHW float tensor, and the kwargs dict contains zero or | |
| more keys, each of which map to a batched Tensor of their own. | |
| The kwargs dict can be used for class labels, in which case the key is "y" | |
| and the values are integer tensors of class labels. | |
| :param data_dir: a dataset directory. | |
| :param batch_size: the batch size of each returned pair. | |
| :param image_size: the size to which images are resized. | |
| :param class_cond: if True, include a "y" key in returned dicts for class | |
| label. If classes are not available and this is true, an | |
| exception will be raised. | |
| :param deterministic: if True, yield results in a deterministic order. | |
| :param random_crop: if True, randomly crop the images for augmentation. | |
| :param random_flip: if True, randomly flip the images for augmentation. | |
| """ | |
| if not data_dir: | |
| raise ValueError("unspecified data directory") | |
| all_files = _list_image_files_recursively(data_dir) | |
| classes = None | |
| if class_cond: | |
| # Assume classes are the first part of the filename, | |
| # before an underscore. | |
| class_names = [bf.basename(path).split("_")[0] for path in all_files] | |
| sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))} | |
| classes = [sorted_classes[x] for x in class_names] | |
| dataset = ImageDataset( | |
| image_size, | |
| all_files, | |
| classes=classes, | |
| shard=MPI.COMM_WORLD.Get_rank(), | |
| num_shards=MPI.COMM_WORLD.Get_size(), | |
| random_crop=random_crop, | |
| random_flip=random_flip, | |
| ) | |
| if deterministic: | |
| loader = DataLoader( | |
| dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True | |
| ) | |
| else: | |
| loader = DataLoader( | |
| dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True | |
| ) | |
| while True: | |
| yield from loader | |
| def _list_image_files_recursively(data_dir): | |
| results = [] | |
| for entry in sorted(bf.listdir(data_dir)): | |
| full_path = bf.join(data_dir, entry) | |
| ext = entry.split(".")[-1] | |
| if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]: | |
| results.append(full_path) | |
| elif bf.isdir(full_path): | |
| results.extend(_list_image_files_recursively(full_path)) | |
| return results | |
| class ImageDataset(Dataset): | |
| def __init__( | |
| self, | |
| resolution, | |
| image_paths, | |
| classes=None, | |
| shard=0, | |
| num_shards=1, | |
| random_crop=False, | |
| random_flip=True, | |
| ): | |
| super().__init__() | |
| self.resolution = resolution | |
| self.local_images = image_paths[shard:][::num_shards] | |
| self.local_classes = None if classes is None else classes[shard:][::num_shards] | |
| self.random_crop = random_crop | |
| self.random_flip = random_flip | |
| def __len__(self): | |
| return len(self.local_images) | |
| def __getitem__(self, idx): | |
| path = self.local_images[idx] | |
| with bf.BlobFile(path, "rb") as f: | |
| pil_image = Image.open(f) | |
| pil_image.load() | |
| pil_image = pil_image.convert("RGB") | |
| if self.random_crop: | |
| arr = random_crop_arr(pil_image, self.resolution) | |
| else: | |
| arr = center_crop_arr(pil_image, self.resolution) | |
| if self.random_flip and random.random() < 0.5: | |
| arr = arr[:, ::-1] | |
| arr = arr.astype(np.float32) / 127.5 - 1 | |
| out_dict = {} | |
| if self.local_classes is not None: | |
| out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64) | |
| return np.transpose(arr, [2, 0, 1]), out_dict | |
| def center_crop_arr(pil_image, image_size): | |
| # We are not on a new enough PIL to support the `reducing_gap` | |
| # argument, which uses BOX downsampling at powers of two first. | |
| # Thus, we do it by hand to improve downsample quality. | |
| while min(*pil_image.size) >= 2 * image_size: | |
| pil_image = pil_image.resize( | |
| tuple(x // 2 for x in pil_image.size), resample=Image.BOX | |
| ) | |
| scale = image_size / min(*pil_image.size) | |
| pil_image = pil_image.resize( | |
| tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC | |
| ) | |
| arr = np.array(pil_image) | |
| crop_y = (arr.shape[0] - image_size) // 2 | |
| crop_x = (arr.shape[1] - image_size) // 2 | |
| return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size] | |
| def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0): | |
| min_smaller_dim_size = math.ceil(image_size / max_crop_frac) | |
| max_smaller_dim_size = math.ceil(image_size / min_crop_frac) | |
| smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1) | |
| # We are not on a new enough PIL to support the `reducing_gap` | |
| # argument, which uses BOX downsampling at powers of two first. | |
| # Thus, we do it by hand to improve downsample quality. | |
| while min(*pil_image.size) >= 2 * smaller_dim_size: | |
| pil_image = pil_image.resize( | |
| tuple(x // 2 for x in pil_image.size), resample=Image.BOX | |
| ) | |
| scale = smaller_dim_size / min(*pil_image.size) | |
| pil_image = pil_image.resize( | |
| tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC | |
| ) | |
| arr = np.array(pil_image) | |
| crop_y = random.randrange(arr.shape[0] - image_size + 1) | |
| crop_x = random.randrange(arr.shape[1] - image_size + 1) | |
| return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size] | |