Spaces:
Running
on
Zero
Running
on
Zero
| import copy | |
| from pdb import set_trace as st | |
| import functools | |
| import os | |
| import numpy as np | |
| import blobfile as bf | |
| import torch as th | |
| import torch.distributed as dist | |
| from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
| from torch.optim import AdamW | |
| from . import dist_util, logger | |
| from .fp16_util import MixedPrecisionTrainer | |
| from .nn import update_ema | |
| from .resample import LossAwareSampler, UniformSampler | |
| from pathlib import Path | |
| # For ImageNet experiments, this was a good default value. | |
| # We found that the lg_loss_scale quickly climbed to | |
| # 20-21 within the first ~1K steps of training. | |
| INITIAL_LOG_LOSS_SCALE = 20.0 | |
| # use_amp = True | |
| # use_amp = False | |
| # if use_amp: | |
| # logger.log('ddpm use AMP to accelerate training') | |
| class TrainLoop: | |
| def __init__( | |
| self, | |
| *, | |
| model, | |
| diffusion, | |
| data, | |
| batch_size, | |
| microbatch, | |
| lr, | |
| ema_rate, | |
| log_interval, | |
| save_interval, | |
| resume_checkpoint, | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| schedule_sampler=None, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| use_amp=False, | |
| model_name='ddpm', | |
| **kwargs | |
| ): | |
| self.kwargs = kwargs | |
| self.pool_512 = th.nn.AdaptiveAvgPool2d((512, 512)) | |
| self.pool_256 = th.nn.AdaptiveAvgPool2d((256, 256)) | |
| self.pool_128 = th.nn.AdaptiveAvgPool2d((128, 128)) | |
| self.pool_64 = th.nn.AdaptiveAvgPool2d((64, 64)) | |
| self.use_amp = use_amp | |
| if use_amp: | |
| if th.backends.cuda.matmul.allow_tf32: # a100 | |
| self.dtype = th.bfloat16 | |
| else: | |
| self.dtype = th.float16 | |
| else: | |
| self.dtype = th.float32 | |
| self.model_name = model_name | |
| self.model = model | |
| self.diffusion = diffusion | |
| self.data = data | |
| self.batch_size = batch_size | |
| self.microbatch = microbatch if microbatch > 0 else batch_size | |
| self.lr = lr | |
| self.ema_rate = ([ema_rate] if isinstance(ema_rate, float) else | |
| [float(x) for x in ema_rate.split(",")]) | |
| self.log_interval = log_interval | |
| self.save_interval = save_interval | |
| self.resume_checkpoint = resume_checkpoint | |
| self.use_fp16 = use_fp16 | |
| self.fp16_scale_growth = fp16_scale_growth | |
| self.schedule_sampler = schedule_sampler or UniformSampler(diffusion) | |
| self.weight_decay = weight_decay | |
| self.lr_anneal_steps = lr_anneal_steps | |
| self.step = 0 | |
| self.resume_step = 0 | |
| self.global_batch = self.batch_size * dist.get_world_size() | |
| self.sync_cuda = th.cuda.is_available() | |
| self._setup_model() | |
| self._load_model() | |
| self._setup_opt() | |
| def _load_model(self): | |
| self._load_and_sync_parameters() | |
| def _setup_opt(self): | |
| self.opt = AdamW(self.mp_trainer.master_params, | |
| lr=self.lr, | |
| weight_decay=self.weight_decay) | |
| def _setup_model(self): | |
| self.mp_trainer = MixedPrecisionTrainer( | |
| model=self.model, | |
| use_fp16=self.use_fp16, | |
| fp16_scale_growth=self.fp16_scale_growth, | |
| use_amp=self.use_amp, | |
| model_name=self.model_name | |
| ) | |
| if self.resume_step: | |
| self._load_optimizer_state() | |
| # Model was resumed, either due to a restart or a checkpoint | |
| # being specified at the command line. | |
| self.ema_params = [ | |
| self._load_ema_parameters(rate) for rate in self.ema_rate | |
| ] | |
| else: | |
| self.ema_params = [ | |
| copy.deepcopy(self.mp_trainer.master_params) | |
| for _ in range(len(self.ema_rate)) | |
| ] | |
| # for compatability | |
| # print('creating DDP') | |
| if th.cuda.is_available(): | |
| # self.use_ddp = True | |
| # self.ddpm_model = self.model | |
| # self.ddp_model = DDP( | |
| # # self.model.to(dist_util.dev()), | |
| # self.model.to('cuda:0'), | |
| # device_ids=[dist_util.dev()], | |
| # output_device=dist_util.dev(), | |
| # broadcast_buffers=False, | |
| # bucket_cap_mb=128, | |
| # find_unused_parameters=False, | |
| # ) | |
| self.ddp_model = self.model.to('cuda:0') # demo does not require ddp | |
| else: | |
| if dist.get_world_size() > 1: | |
| logger.warn("Distributed training requires CUDA. " | |
| "Gradients will not be synchronized properly!") | |
| self.use_ddp = False | |
| self.ddp_model = self.model | |
| # print('creating DDP done') | |
| def _load_and_sync_parameters(self): | |
| resume_checkpoint, resume_step = find_resume_checkpoint( | |
| ) or self.resume_checkpoint | |
| if resume_checkpoint: | |
| if not Path(resume_checkpoint).exists(): | |
| logger.log( | |
| f"failed to load model from checkpoint: {resume_checkpoint}, not exist" | |
| ) | |
| return | |
| # self.resume_step = parse_resume_step_from_filename(resume_checkpoint) | |
| self.resume_step = resume_step # TODO, EMA part | |
| if dist.get_rank() == 0: | |
| logger.log( | |
| f"loading model from checkpoint: {resume_checkpoint}...") | |
| # if model is None: | |
| # model = self.model | |
| self.model.load_state_dict( | |
| dist_util.load_state_dict( | |
| resume_checkpoint, | |
| map_location=dist_util.dev(), | |
| )) | |
| # ! debugging, remove to check which key fails. | |
| dist_util.sync_params(self.model.parameters()) | |
| # dist_util.sync_params(self.model.named_parameters()) | |
| def _load_ema_parameters(self, | |
| rate, | |
| model=None, | |
| mp_trainer=None, | |
| model_name='ddpm'): | |
| if mp_trainer is None: | |
| mp_trainer = self.mp_trainer | |
| if model is None: | |
| model = self.model | |
| ema_params = copy.deepcopy(mp_trainer.master_params) | |
| main_checkpoint, _ = find_resume_checkpoint( | |
| self.resume_checkpoint, model_name) or self.resume_checkpoint | |
| ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, | |
| rate, model_name) | |
| if ema_checkpoint: | |
| if dist_util.get_rank() == 0: | |
| if not Path(ema_checkpoint).exists(): | |
| logger.log( | |
| f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist" | |
| ) | |
| return | |
| logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") | |
| map_location = { | |
| 'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
| } # configure map_location properly | |
| state_dict = dist_util.load_state_dict( | |
| ema_checkpoint, map_location=map_location) | |
| model_ema_state_dict = model.state_dict() | |
| for k, v in state_dict.items(): | |
| if k in model_ema_state_dict.keys() and v.size( | |
| ) == model_ema_state_dict[k].size(): | |
| model_ema_state_dict[k] = v | |
| # elif 'IN' in k and model_name == 'rec' and getattr(model.decoder, 'decomposed_IN', False): | |
| # model_ema_state_dict[k.replace('IN', 'superresolution.norm.norm_layer')] = v # decomposed IN | |
| else: | |
| print('ignore key: ', k, ": ", v.size()) | |
| ema_params = mp_trainer.state_dict_to_master_params( | |
| model_ema_state_dict) | |
| del state_dict | |
| # print('ema mark 3, ', model_name, flush=True) | |
| if dist_util.get_world_size() > 1: | |
| dist_util.sync_params(ema_params) | |
| # print('ema mark 4, ', model_name, flush=True) | |
| # del ema_params | |
| return ema_params | |
| def _load_ema_parameters_freezeAE( | |
| self, | |
| rate, | |
| model, | |
| # mp_trainer=None, | |
| model_name='rec'): | |
| # if mp_trainer is None: | |
| # mp_trainer = self.mp_trainer | |
| # if model is None: | |
| # model = self.model_rec | |
| # ema_params = copy.deepcopy(mp_trainer.master_params) | |
| main_checkpoint, _ = find_resume_checkpoint( | |
| self.resume_checkpoint, model_name) or self.resume_checkpoint | |
| ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, | |
| rate, model_name) | |
| if ema_checkpoint: | |
| if dist_util.get_rank() == 0: | |
| if not Path(ema_checkpoint).exists(): | |
| logger.log( | |
| f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist" | |
| ) | |
| return | |
| logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") | |
| map_location = { | |
| 'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
| } # configure map_location properly | |
| state_dict = dist_util.load_state_dict( | |
| ema_checkpoint, map_location=map_location) | |
| model_ema_state_dict = model.state_dict() | |
| for k, v in state_dict.items(): | |
| if k in model_ema_state_dict.keys() and v.size( | |
| ) == model_ema_state_dict[k].size(): | |
| model_ema_state_dict[k] = v | |
| else: | |
| print('ignore key: ', k, ": ", v.size()) | |
| ema_params = mp_trainer.state_dict_to_master_params( | |
| model_ema_state_dict) | |
| del state_dict | |
| # print('ema mark 3, ', model_name, flush=True) | |
| if dist_util.get_world_size() > 1: | |
| dist_util.sync_params(ema_params) | |
| # print('ema mark 4, ', model_name, flush=True) | |
| # del ema_params | |
| return ema_params | |
| # def _load_ema_parameters(self, rate): | |
| # ema_params = copy.deepcopy(self.mp_trainer.master_params) | |
| # main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint | |
| # ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate) | |
| # if ema_checkpoint: | |
| # if dist.get_rank() == 0: | |
| # logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") | |
| # state_dict = dist_util.load_state_dict( | |
| # ema_checkpoint, map_location=dist_util.dev() | |
| # ) | |
| # ema_params = self.mp_trainer.state_dict_to_master_params(state_dict) | |
| # dist_util.sync_params(ema_params) | |
| # return ema_params | |
| def _load_optimizer_state(self): | |
| main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint | |
| opt_checkpoint = bf.join(bf.dirname(main_checkpoint), | |
| f"opt{self.resume_step:06}.pt") | |
| if bf.exists(opt_checkpoint): | |
| logger.log( | |
| f"loading optimizer state from checkpoint: {opt_checkpoint}") | |
| state_dict = dist_util.load_state_dict( | |
| opt_checkpoint, map_location=dist_util.dev()) | |
| self.opt.load_state_dict(state_dict) | |
| def run_loop(self): | |
| while (not self.lr_anneal_steps | |
| or self.step + self.resume_step < self.lr_anneal_steps): | |
| batch, cond = next(self.data) | |
| self.run_step(batch, cond) | |
| if self.step % self.log_interval == 0: | |
| logger.dumpkvs() | |
| if self.step % self.save_interval == 0: | |
| self.save() | |
| # Run for a finite amount of time in integration tests. | |
| if os.environ.get("DIFFUSION_TRAINING_TEST", | |
| "") and self.step > 0: | |
| return | |
| self.step += 1 | |
| # Save the last checkpoint if it wasn't already saved. | |
| if (self.step - 1) % self.save_interval != 0: | |
| self.save() | |
| def run_step(self, batch, cond): | |
| self.forward_backward(batch, cond) | |
| took_step = self.mp_trainer.optimize(self.opt) | |
| if took_step: | |
| self._update_ema() | |
| self._anneal_lr() | |
| self.log_step() | |
| def forward_backward(self, batch, cond): | |
| self.mp_trainer.zero_grad() | |
| for i in range(0, batch.shape[0], self.microbatch): | |
| # st() | |
| with th.autocast(device_type=dist_util.dev(), | |
| dtype=th.float16, | |
| enabled=self.mp_trainer.use_amp): | |
| micro = batch[i:i + self.microbatch].to(dist_util.dev()) | |
| micro_cond = { | |
| k: v[i:i + self.microbatch].to(dist_util.dev()) | |
| for k, v in cond.items() | |
| } | |
| last_batch = (i + self.microbatch) >= batch.shape[0] | |
| t, weights = self.schedule_sampler.sample( | |
| micro.shape[0], dist_util.dev()) | |
| compute_losses = functools.partial( | |
| self.diffusion.training_losses, | |
| self.ddp_model, | |
| micro, | |
| t, | |
| model_kwargs=micro_cond, | |
| ) | |
| if last_batch or not self.use_ddp: | |
| losses = compute_losses() | |
| else: | |
| with self.ddp_model.no_sync(): | |
| losses = compute_losses() | |
| if isinstance(self.schedule_sampler, LossAwareSampler): | |
| self.schedule_sampler.update_with_local_losses( | |
| t, losses["loss"].detach()) | |
| loss = (losses["loss"] * weights).mean() | |
| log_loss_dict(self.diffusion, t, | |
| {k: v * weights | |
| for k, v in losses.items()}) | |
| self.mp_trainer.backward(loss) | |
| def _update_ema(self): | |
| for rate, params in zip(self.ema_rate, self.ema_params): | |
| update_ema(params, self.mp_trainer.master_params, rate=rate) | |
| def _anneal_lr(self): | |
| if not self.lr_anneal_steps: | |
| return | |
| frac_done = (self.step + self.resume_step) / self.lr_anneal_steps | |
| lr = self.lr * (1 - frac_done) | |
| for param_group in self.opt.param_groups: | |
| param_group["lr"] = lr | |
| def log_step(self): | |
| logger.logkv("step", self.step + self.resume_step) | |
| logger.logkv("samples", | |
| (self.step + self.resume_step + 1) * self.global_batch) | |
| def save(self): | |
| def save_checkpoint(rate, params): | |
| state_dict = self.mp_trainer.master_params_to_state_dict(params) | |
| if dist.get_rank() == 0: | |
| logger.log(f"saving model {rate}...") | |
| if not rate: | |
| filename = f"model{(self.step+self.resume_step):07d}.pt" | |
| else: | |
| filename = f"ema_{rate}_{(self.step+self.resume_step):07d}.pt" | |
| with bf.BlobFile(bf.join(get_blob_logdir(), filename), | |
| "wb") as f: | |
| th.save(state_dict, f) | |
| save_checkpoint(0, self.mp_trainer.master_params) | |
| for rate, params in zip(self.ema_rate, self.ema_params): | |
| save_checkpoint(rate, params) | |
| if dist.get_rank() == 0: | |
| with bf.BlobFile( | |
| bf.join(get_blob_logdir(), | |
| f"opt{(self.step+self.resume_step):07d}.pt"), | |
| "wb", | |
| ) as f: | |
| th.save(self.opt.state_dict(), f) | |
| dist.barrier() | |
| def parse_resume_step_from_filename(filename): | |
| """ | |
| Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the | |
| checkpoint's number of steps. | |
| """ | |
| # split1 = Path(filename).stem[-6:] | |
| split1 = Path(filename).stem[-7:] | |
| # split = filename.split("model") | |
| # if len(split) < 2: | |
| # return 0 | |
| # split1 = split[-1].split(".")[0] | |
| try: | |
| return int(split1) | |
| except ValueError: | |
| print('fail to load model step', split1) | |
| return 0 | |
| def get_blob_logdir(): | |
| # You can change this to be a separate path to save checkpoints to | |
| # a blobstore or some external drive. | |
| return logger.get_dir() | |
| def find_resume_checkpoint(resume_checkpoint='', model_name='ddpm'): | |
| # On your infrastructure, you may want to override this to automatically | |
| # discover the latest checkpoint on your blob storage, etc. | |
| if resume_checkpoint != '': | |
| step = parse_resume_step_from_filename(resume_checkpoint) | |
| split = resume_checkpoint.split("model") | |
| resume_ckpt_path = str( | |
| Path(split[0]) / f'model_{model_name}{step:07d}.pt') | |
| else: | |
| resume_ckpt_path = '' | |
| step = 0 | |
| return resume_ckpt_path, step | |
| def find_ema_checkpoint(main_checkpoint, step, rate, model_name=''): | |
| if main_checkpoint is None: | |
| return None | |
| if model_name == '': | |
| filename = f"ema_{rate}_{(step):07d}.pt" | |
| else: | |
| filename = f"ema_{model_name}_{rate}_{(step):07d}.pt" | |
| path = bf.join(bf.dirname(main_checkpoint), filename) | |
| # print(path) | |
| # st() | |
| if bf.exists(path): | |
| print('fine ema model', path) | |
| return path | |
| else: | |
| print('fail to find ema model', path) | |
| return None | |
| def log_loss_dict(diffusion, ts, losses): | |
| for key, values in losses.items(): | |
| logger.logkv_mean(key, values.mean().item()) | |
| # Log the quantiles (four quartiles, in particular). | |
| for sub_t, sub_loss in zip(ts.cpu().numpy(), | |
| values.detach().cpu().numpy()): | |
| quartile = int(4 * sub_t / diffusion.num_timesteps) | |
| logger.logkv_mean(f"{key}_q{quartile}", sub_loss) | |
| def log_rec3d_loss_dict(loss_dict): | |
| for key, values in loss_dict.items(): | |
| try: | |
| logger.logkv_mean(key, values.mean().item()) | |
| except: | |
| print('type error:', key) | |
| def calc_average_loss(all_loss_dicts, verbose=True): | |
| all_scores = {} # todo, defaultdict | |
| mean_all_scores = {} | |
| for loss_dict in all_loss_dicts: | |
| for k, v in loss_dict.items(): | |
| v = v.item() | |
| if k not in all_scores: | |
| # all_scores[f'{k}_val'] = [v] | |
| all_scores[k] = [v] | |
| else: | |
| all_scores[k].append(v) | |
| for k, v in all_scores.items(): | |
| mean = np.mean(v) | |
| std = np.std(v) | |
| if k in ['loss_lpis', 'loss_ssim']: | |
| mean = 1 - mean | |
| result_str = '{} average loss is {:.4f} +- {:.4f}'.format(k, mean, std) | |
| mean_all_scores[k] = mean | |
| if verbose: | |
| print(result_str) | |
| val_scores_for_logging = { | |
| f'{k}_val': v | |
| for k, v in mean_all_scores.items() | |
| } | |
| return val_scores_for_logging |