Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from ..modules.attention import * | |
| from ..modules.diffusionmodules.util import (AlphaBlender, linear, | |
| timestep_embedding) | |
| class TimeMixSequential(nn.Sequential): | |
| def forward(self, x, context=None, timesteps=None): | |
| for layer in self: | |
| x = layer(x, context, timesteps) | |
| return x | |
| class VideoTransformerBlock(nn.Module): | |
| ATTENTION_MODES = { | |
| "softmax": CrossAttention, | |
| "softmax-xformers": MemoryEfficientCrossAttention, | |
| } | |
| def __init__( | |
| self, | |
| dim, | |
| n_heads, | |
| d_head, | |
| dropout=0.0, | |
| context_dim=None, | |
| gated_ff=True, | |
| checkpoint=True, | |
| timesteps=None, | |
| ff_in=False, | |
| inner_dim=None, | |
| attn_mode="softmax", | |
| disable_self_attn=False, | |
| disable_temporal_crossattention=False, | |
| switch_temporal_ca_to_sa=False, | |
| ): | |
| super().__init__() | |
| attn_cls = self.ATTENTION_MODES[attn_mode] | |
| self.ff_in = ff_in or inner_dim is not None | |
| if inner_dim is None: | |
| inner_dim = dim | |
| assert int(n_heads * d_head) == inner_dim | |
| self.is_res = inner_dim == dim | |
| if self.ff_in: | |
| self.norm_in = nn.LayerNorm(dim) | |
| self.ff_in = FeedForward( | |
| dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff | |
| ) | |
| self.timesteps = timesteps | |
| self.disable_self_attn = disable_self_attn | |
| if self.disable_self_attn: | |
| self.attn1 = attn_cls( | |
| query_dim=inner_dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| context_dim=context_dim, | |
| dropout=dropout, | |
| ) # is a cross-attention | |
| else: | |
| self.attn1 = attn_cls( | |
| query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
| ) # is a self-attention | |
| self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff) | |
| if disable_temporal_crossattention: | |
| if switch_temporal_ca_to_sa: | |
| raise ValueError | |
| else: | |
| self.attn2 = None | |
| else: | |
| self.norm2 = nn.LayerNorm(inner_dim) | |
| if switch_temporal_ca_to_sa: | |
| self.attn2 = attn_cls( | |
| query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
| ) # is a self-attention | |
| else: | |
| self.attn2 = attn_cls( | |
| query_dim=inner_dim, | |
| context_dim=context_dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| ) # is self-attn if context is none | |
| self.norm1 = nn.LayerNorm(inner_dim) | |
| self.norm3 = nn.LayerNorm(inner_dim) | |
| self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa | |
| self.checkpoint = checkpoint | |
| if self.checkpoint: | |
| print(f"{self.__class__.__name__} is using checkpointing") | |
| def forward( | |
| self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None | |
| ) -> torch.Tensor: | |
| if self.checkpoint: | |
| return checkpoint(self._forward, x, context, timesteps) | |
| else: | |
| return self._forward(x, context, timesteps=timesteps) | |
| def _forward(self, x, context=None, timesteps=None): | |
| assert self.timesteps or timesteps | |
| assert not (self.timesteps and timesteps) or self.timesteps == timesteps | |
| timesteps = self.timesteps or timesteps | |
| B, S, C = x.shape | |
| x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps) | |
| if self.ff_in: | |
| x_skip = x | |
| x = self.ff_in(self.norm_in(x)) | |
| if self.is_res: | |
| x += x_skip | |
| if self.disable_self_attn: | |
| x = self.attn1(self.norm1(x), context=context) + x | |
| else: | |
| x = self.attn1(self.norm1(x)) + x | |
| if self.attn2 is not None: | |
| if self.switch_temporal_ca_to_sa: | |
| x = self.attn2(self.norm2(x)) + x | |
| else: | |
| x = self.attn2(self.norm2(x), context=context) + x | |
| x_skip = x | |
| x = self.ff(self.norm3(x)) | |
| if self.is_res: | |
| x += x_skip | |
| x = rearrange( | |
| x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps | |
| ) | |
| return x | |
| def get_last_layer(self): | |
| return self.ff.net[-1].weight | |
| class SpatialVideoTransformer(SpatialTransformer): | |
| def __init__( | |
| self, | |
| in_channels, | |
| n_heads, | |
| d_head, | |
| depth=1, | |
| dropout=0.0, | |
| use_linear=False, | |
| context_dim=None, | |
| use_spatial_context=False, | |
| timesteps=None, | |
| merge_strategy: str = "fixed", | |
| merge_factor: float = 0.5, | |
| time_context_dim=None, | |
| ff_in=False, | |
| checkpoint=False, | |
| time_depth=1, | |
| attn_mode="softmax", | |
| disable_self_attn=False, | |
| disable_temporal_crossattention=False, | |
| max_time_embed_period: int = 10000, | |
| ): | |
| super().__init__( | |
| in_channels, | |
| n_heads, | |
| d_head, | |
| depth=depth, | |
| dropout=dropout, | |
| attn_type=attn_mode, | |
| use_checkpoint=checkpoint, | |
| context_dim=context_dim, | |
| use_linear=use_linear, | |
| disable_self_attn=disable_self_attn, | |
| ) | |
| self.time_depth = time_depth | |
| self.depth = depth | |
| self.max_time_embed_period = max_time_embed_period | |
| time_mix_d_head = d_head | |
| n_time_mix_heads = n_heads | |
| time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) | |
| inner_dim = n_heads * d_head | |
| if use_spatial_context: | |
| time_context_dim = context_dim | |
| self.time_stack = nn.ModuleList( | |
| [ | |
| VideoTransformerBlock( | |
| inner_dim, | |
| n_time_mix_heads, | |
| time_mix_d_head, | |
| dropout=dropout, | |
| context_dim=time_context_dim, | |
| timesteps=timesteps, | |
| checkpoint=checkpoint, | |
| ff_in=ff_in, | |
| inner_dim=time_mix_inner_dim, | |
| attn_mode=attn_mode, | |
| disable_self_attn=disable_self_attn, | |
| disable_temporal_crossattention=disable_temporal_crossattention, | |
| ) | |
| for _ in range(self.depth) | |
| ] | |
| ) | |
| assert len(self.time_stack) == len(self.transformer_blocks) | |
| self.use_spatial_context = use_spatial_context | |
| self.in_channels = in_channels | |
| time_embed_dim = self.in_channels * 4 | |
| self.time_pos_embed = nn.Sequential( | |
| linear(self.in_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, self.in_channels), | |
| ) | |
| self.time_mixer = AlphaBlender( | |
| alpha=merge_factor, merge_strategy=merge_strategy | |
| ) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| context: Optional[torch.Tensor] = None, | |
| time_context: Optional[torch.Tensor] = None, | |
| timesteps: Optional[int] = None, | |
| image_only_indicator: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| _, _, h, w = x.shape | |
| x_in = x | |
| spatial_context = None | |
| if exists(context): | |
| spatial_context = context | |
| if self.use_spatial_context: | |
| assert ( | |
| context.ndim == 3 | |
| ), f"n dims of spatial context should be 3 but are {context.ndim}" | |
| time_context = context | |
| time_context_first_timestep = time_context[::timesteps] | |
| time_context = repeat( | |
| time_context_first_timestep, "b ... -> (b n) ...", n=h * w | |
| ) | |
| elif time_context is not None and not self.use_spatial_context: | |
| time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) | |
| if time_context.ndim == 2: | |
| time_context = rearrange(time_context, "b c -> b 1 c") | |
| x = self.norm(x) | |
| if not self.use_linear: | |
| x = self.proj_in(x) | |
| x = rearrange(x, "b c h w -> b (h w) c") | |
| if self.use_linear: | |
| x = self.proj_in(x) | |
| num_frames = torch.arange(timesteps, device=x.device) | |
| num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) | |
| num_frames = rearrange(num_frames, "b t -> (b t)") | |
| t_emb = timestep_embedding( | |
| num_frames, | |
| self.in_channels, | |
| repeat_only=False, | |
| max_period=self.max_time_embed_period, | |
| ) | |
| emb = self.time_pos_embed(t_emb) | |
| emb = emb[:, None, :] | |
| for it_, (block, mix_block) in enumerate( | |
| zip(self.transformer_blocks, self.time_stack) | |
| ): | |
| x = block( | |
| x, | |
| context=spatial_context, | |
| ) | |
| x_mix = x | |
| x_mix = x_mix + emb | |
| x_mix = mix_block(x_mix, context=time_context, timesteps=timesteps) | |
| x = self.time_mixer( | |
| x_spatial=x, | |
| x_temporal=x_mix, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| if self.use_linear: | |
| x = self.proj_out(x) | |
| x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) | |
| if not self.use_linear: | |
| x = self.proj_out(x) | |
| out = x + x_in | |
| return out | |