Spaces:
Running
on
Zero
Running
on
Zero
| # https://raw.githubusercontent.com/facebookresearch/dino/main/utils.py | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Misc functions. | |
| Mostly copy-paste from torchvision references or other public repos like DETR: | |
| https://github.com/facebookresearch/detr/blob/master/util/misc.py | |
| """ | |
| import os | |
| import sys | |
| import time | |
| import math | |
| import random | |
| import datetime | |
| import subprocess | |
| from collections import defaultdict, deque | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| import torch.distributed as dist | |
| from PIL import ImageFilter, ImageOps | |
| class GaussianBlur(object): | |
| """ | |
| Apply Gaussian Blur to the PIL image. | |
| """ | |
| def __init__(self, p=0.5, radius_min=0.1, radius_max=2.): | |
| self.prob = p | |
| self.radius_min = radius_min | |
| self.radius_max = radius_max | |
| def __call__(self, img): | |
| do_it = random.random() <= self.prob | |
| if not do_it: | |
| return img | |
| return img.filter( | |
| ImageFilter.GaussianBlur( | |
| radius=random.uniform(self.radius_min, self.radius_max))) | |
| class Solarization(object): | |
| """ | |
| Apply Solarization to the PIL image. | |
| """ | |
| def __init__(self, p): | |
| self.p = p | |
| def __call__(self, img): | |
| if random.random() < self.p: | |
| return ImageOps.solarize(img) | |
| else: | |
| return img | |
| def load_pretrained_weights(model, pretrained_weights, checkpoint_key, | |
| model_name, patch_size): | |
| if os.path.isfile(pretrained_weights): | |
| state_dict = torch.load(pretrained_weights, map_location="cpu") | |
| if checkpoint_key is not None and checkpoint_key in state_dict: | |
| print(f"Take key {checkpoint_key} in provided checkpoint dict") | |
| state_dict = state_dict[checkpoint_key] | |
| # remove `module.` prefix | |
| state_dict = { | |
| k.replace("module.", ""): v | |
| for k, v in state_dict.items() | |
| } | |
| # remove `backbone.` prefix induced by multicrop wrapper | |
| state_dict = { | |
| k.replace("backbone.", ""): v | |
| for k, v in state_dict.items() | |
| } | |
| msg = model.load_state_dict(state_dict, strict=False) | |
| print('Pretrained weights found at {} and loaded with msg: {}'.format( | |
| pretrained_weights, msg)) | |
| else: | |
| print( | |
| "Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate." | |
| ) | |
| url = None | |
| if model_name == "vit_small" and patch_size == 16: | |
| url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth" | |
| elif model_name == "vit_small" and patch_size == 8: | |
| url = "dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth" | |
| elif model_name == "vit_base" and patch_size == 16: | |
| url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth" | |
| elif model_name == "vit_base" and patch_size == 8: | |
| url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth" | |
| elif model_name == "xcit_small_12_p16": | |
| url = "dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth" | |
| elif model_name == "xcit_small_12_p8": | |
| url = "dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth" | |
| elif model_name == "xcit_medium_24_p16": | |
| url = "dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth" | |
| elif model_name == "xcit_medium_24_p8": | |
| url = "dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth" | |
| elif model_name == "resnet50": | |
| url = "dino_resnet50_pretrain/dino_resnet50_pretrain.pth" | |
| if url is not None: | |
| print( | |
| "Since no pretrained weights have been provided, we load the reference pretrained DINO weights." | |
| ) | |
| state_dict = torch.hub.load_state_dict_from_url( | |
| url="https://dl.fbaipublicfiles.com/dino/" + url) | |
| model.load_state_dict(state_dict, strict=True) | |
| else: | |
| print( | |
| "There is no reference weights available for this model => We use random weights." | |
| ) | |
| def load_pretrained_linear_weights(linear_classifier, model_name, patch_size): | |
| url = None | |
| if model_name == "vit_small" and patch_size == 16: | |
| url = "dino_deitsmall16_pretrain/dino_deitsmall16_linearweights.pth" | |
| elif model_name == "vit_small" and patch_size == 8: | |
| url = "dino_deitsmall8_pretrain/dino_deitsmall8_linearweights.pth" | |
| elif model_name == "vit_base" and patch_size == 16: | |
| url = "dino_vitbase16_pretrain/dino_vitbase16_linearweights.pth" | |
| elif model_name == "vit_base" and patch_size == 8: | |
| url = "dino_vitbase8_pretrain/dino_vitbase8_linearweights.pth" | |
| elif model_name == "resnet50": | |
| url = "dino_resnet50_pretrain/dino_resnet50_linearweights.pth" | |
| if url is not None: | |
| print("We load the reference pretrained linear weights.") | |
| state_dict = torch.hub.load_state_dict_from_url( | |
| url="https://dl.fbaipublicfiles.com/dino/" + url)["state_dict"] | |
| linear_classifier.load_state_dict(state_dict, strict=True) | |
| else: | |
| print("We use random linear weights.") | |
| def clip_gradients(model, clip): | |
| norms = [] | |
| for name, p in model.named_parameters(): | |
| if p.grad is not None: | |
| param_norm = p.grad.data.norm(2) | |
| norms.append(param_norm.item()) | |
| clip_coef = clip / (param_norm + 1e-6) | |
| if clip_coef < 1: | |
| p.grad.data.mul_(clip_coef) | |
| return norms | |
| def cancel_gradients_last_layer(epoch, model, freeze_last_layer): | |
| if epoch >= freeze_last_layer: | |
| return | |
| for n, p in model.named_parameters(): | |
| if "last_layer" in n: | |
| p.grad = None | |
| def restart_from_checkpoint(ckp_path, run_variables=None, **kwargs): | |
| """ | |
| Re-start from checkpoint | |
| """ | |
| if not os.path.isfile(ckp_path): | |
| return | |
| print("Found checkpoint at {}".format(ckp_path)) | |
| # open checkpoint file | |
| checkpoint = torch.load(ckp_path, map_location="cpu") | |
| # key is what to look for in the checkpoint file | |
| # value is the object to load | |
| # example: {'state_dict': model} | |
| for key, value in kwargs.items(): | |
| if key in checkpoint and value is not None: | |
| try: | |
| msg = value.load_state_dict(checkpoint[key], strict=False) | |
| print("=> loaded '{}' from checkpoint '{}' with msg {}".format( | |
| key, ckp_path, msg)) | |
| except TypeError: | |
| try: | |
| msg = value.load_state_dict(checkpoint[key]) | |
| print("=> loaded '{}' from checkpoint: '{}'".format( | |
| key, ckp_path)) | |
| except ValueError: | |
| print( | |
| "=> failed to load '{}' from checkpoint: '{}'".format( | |
| key, ckp_path)) | |
| else: | |
| print("=> key '{}' not found in checkpoint: '{}'".format( | |
| key, ckp_path)) | |
| # re load variable important for the run | |
| if run_variables is not None: | |
| for var_name in run_variables: | |
| if var_name in checkpoint: | |
| run_variables[var_name] = checkpoint[var_name] | |
| def cosine_scheduler(base_value, | |
| final_value, | |
| epochs, | |
| niter_per_ep, | |
| warmup_epochs=0, | |
| start_warmup_value=0): | |
| warmup_schedule = np.array([]) | |
| warmup_iters = warmup_epochs * niter_per_ep | |
| if warmup_epochs > 0: | |
| warmup_schedule = np.linspace(start_warmup_value, base_value, | |
| warmup_iters) | |
| iters = np.arange(epochs * niter_per_ep - warmup_iters) | |
| schedule = final_value + 0.5 * (base_value - final_value) * ( | |
| 1 + np.cos(np.pi * iters / len(iters))) | |
| schedule = np.concatenate((warmup_schedule, schedule)) | |
| assert len(schedule) == epochs * niter_per_ep | |
| return schedule | |
| def bool_flag(s): | |
| """ | |
| Parse boolean arguments from the command line. | |
| """ | |
| FALSY_STRINGS = {"off", "false", "0"} | |
| TRUTHY_STRINGS = {"on", "true", "1"} | |
| if s.lower() in FALSY_STRINGS: | |
| return False | |
| elif s.lower() in TRUTHY_STRINGS: | |
| return True | |
| else: | |
| raise argparse.ArgumentTypeError("invalid value for a boolean flag") | |
| def fix_random_seeds(seed=31): | |
| """ | |
| Fix random seeds. | |
| """ | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| np.random.seed(seed) | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.6f} ({global_avg:.6f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not is_dist_avail_and_initialized(): | |
| return | |
| t = torch.tensor([self.count, self.total], | |
| dtype=torch.float64, | |
| device='cuda') | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format(median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value) | |
| def reduce_dict(input_dict, average=True): | |
| """ | |
| Args: | |
| input_dict (dict): all the values will be reduced | |
| average (bool): whether to do average or sum | |
| Reduce the values in the dictionary from all processes so that all processes | |
| have the averaged results. Returns a dict with the same fields as | |
| input_dict, after reduction. | |
| """ | |
| world_size = get_world_size() | |
| if world_size < 2: | |
| return input_dict | |
| with torch.no_grad(): | |
| names = [] | |
| values = [] | |
| # sort the keys so that they are consistent across processes | |
| for k in sorted(input_dict.keys()): | |
| names.append(k) | |
| values.append(input_dict[k]) | |
| values = torch.stack(values, dim=0) | |
| dist.all_reduce(values) | |
| if average: | |
| values /= world_size | |
| reduced_dict = {k: v for k, v in zip(names, values)} | |
| return reduced_dict | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format( | |
| type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append("{}: {}".format(name, str(meter))) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None): | |
| i = 0 | |
| if not header: | |
| header = '' | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt='{avg:.6f}') | |
| data_time = SmoothedValue(fmt='{avg:.6f}') | |
| space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
| if torch.cuda.is_available(): | |
| log_msg = self.delimiter.join([ | |
| header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', | |
| 'time: {time}', 'data: {data}', 'max mem: {memory:.0f}' | |
| ]) | |
| else: | |
| log_msg = self.delimiter.join([ | |
| header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', | |
| 'time: {time}', 'data: {data}' | |
| ]) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len(iterable) - 1: | |
| eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| print( | |
| log_msg.format( | |
| i, | |
| len(iterable), | |
| eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), | |
| data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB)) | |
| else: | |
| print( | |
| log_msg.format(i, | |
| len(iterable), | |
| eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), | |
| data=str(data_time))) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print('{} Total time: {} ({:.6f} s / it)'.format( | |
| header, total_time_str, total_time / len(iterable))) | |
| def get_sha(): | |
| cwd = os.path.dirname(os.path.abspath(__file__)) | |
| def _run(command): | |
| return subprocess.check_output(command, | |
| cwd=cwd).decode('ascii').strip() | |
| sha = 'N/A' | |
| diff = "clean" | |
| branch = 'N/A' | |
| try: | |
| sha = _run(['git', 'rev-parse', 'HEAD']) | |
| subprocess.check_output(['git', 'diff'], cwd=cwd) | |
| diff = _run(['git', 'diff-index', 'HEAD']) | |
| diff = "has uncommited changes" if diff else "clean" | |
| branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) | |
| except Exception: | |
| pass | |
| message = f"sha: {sha}, status: {diff}, branch: {branch}" | |
| return message | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def save_on_master(*args, **kwargs): | |
| if is_main_process(): | |
| torch.save(*args, **kwargs) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| import builtins as __builtin__ | |
| builtin_print = __builtin__.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop('force', False) | |
| if is_master or force: | |
| builtin_print(*args, **kwargs) | |
| __builtin__.print = print | |
| def init_distributed_mode(args): | |
| # launched with torch.distributed.launch | |
| if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| # launched with submitit on a slurm cluster | |
| elif 'SLURM_PROCID' in os.environ: | |
| args.rank = int(os.environ['SLURM_PROCID']) | |
| args.gpu = args.rank % torch.cuda.device_count() | |
| # launched naively with `python main_dino.py` | |
| # we manually add MASTER_ADDR and MASTER_PORT to env variables | |
| elif torch.cuda.is_available(): | |
| print('Will run the code on one GPU.') | |
| args.rank, args.gpu, args.world_size = 0, 0, 1 | |
| os.environ['MASTER_ADDR'] = '127.0.0.1' | |
| os.environ['MASTER_PORT'] = '29500' | |
| else: | |
| print('Does not support training without GPU.') | |
| sys.exit(1) | |
| dist.init_process_group( | |
| backend="nccl", | |
| init_method=args.dist_url, | |
| world_size=args.world_size, | |
| rank=args.rank, | |
| ) | |
| torch.cuda.set_device(args.gpu) | |
| print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), | |
| flush=True) | |
| dist.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| def accuracy(output, target, topk=(1, )): | |
| """Computes the accuracy over the k top predictions for the specified values of k""" | |
| maxk = max(topk) | |
| batch_size = target.size(0) | |
| _, pred = output.topk(maxk, 1, True, True) | |
| pred = pred.t() | |
| correct = pred.eq(target.reshape(1, -1).expand_as(pred)) | |
| return [ | |
| correct[:k].reshape(-1).float().sum(0) * 100. / batch_size | |
| for k in topk | |
| ] | |
| def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
| # Cut & paste from PyTorch official master until it's in a few official releases - RW | |
| # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
| def norm_cdf(x): | |
| # Computes standard normal cumulative distribution function | |
| return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
| if (mean < a - 2 * std) or (mean > b + 2 * std): | |
| warnings.warn( | |
| "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
| "The distribution of values may be incorrect.", | |
| stacklevel=2) | |
| with torch.no_grad(): | |
| # Values are generated by using a truncated uniform distribution and | |
| # then using the inverse CDF for the normal distribution. | |
| # Get upper and lower cdf values | |
| l = norm_cdf((a - mean) / std) | |
| u = norm_cdf((b - mean) / std) | |
| # Uniformly fill tensor with values from [l, u], then translate to | |
| # [2l-1, 2u-1]. | |
| tensor.uniform_(2 * l - 1, 2 * u - 1) | |
| # Use inverse cdf transform for normal distribution to get truncated | |
| # standard normal | |
| tensor.erfinv_() | |
| # Transform to proper mean, std | |
| tensor.mul_(std * math.sqrt(2.)) | |
| tensor.add_(mean) | |
| # Clamp to ensure it's in the proper range | |
| tensor.clamp_(min=a, max=b) | |
| return tensor | |
| def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
| # type: (Tensor, float, float, float, float) -> Tensor | |
| return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
| class LARS(torch.optim.Optimizer): | |
| """ | |
| Almost copy-paste from https://github.com/facebookresearch/barlowtwins/blob/main/main.py | |
| """ | |
| def __init__(self, | |
| params, | |
| lr=0, | |
| weight_decay=0, | |
| momentum=0.9, | |
| eta=0.001, | |
| weight_decay_filter=None, | |
| lars_adaptation_filter=None): | |
| defaults = dict(lr=lr, | |
| weight_decay=weight_decay, | |
| momentum=momentum, | |
| eta=eta, | |
| weight_decay_filter=weight_decay_filter, | |
| lars_adaptation_filter=lars_adaptation_filter) | |
| super().__init__(params, defaults) | |
| def step(self): | |
| for g in self.param_groups: | |
| for p in g['params']: | |
| dp = p.grad | |
| if dp is None: | |
| continue | |
| if p.ndim != 1: | |
| dp = dp.add(p, alpha=g['weight_decay']) | |
| if p.ndim != 1: | |
| param_norm = torch.norm(p) | |
| update_norm = torch.norm(dp) | |
| one = torch.ones_like(param_norm) | |
| q = torch.where( | |
| param_norm > 0., | |
| torch.where(update_norm > 0, | |
| (g['eta'] * param_norm / update_norm), | |
| one), one) | |
| dp = dp.mul(q) | |
| param_state = self.state[p] | |
| if 'mu' not in param_state: | |
| param_state['mu'] = torch.zeros_like(p) | |
| mu = param_state['mu'] | |
| mu.mul_(g['momentum']).add_(dp) | |
| p.add_(mu, alpha=-g['lr']) | |
| class MultiCropWrapper(nn.Module): | |
| """ | |
| Perform forward pass separately on each resolution input. | |
| The inputs corresponding to a single resolution are clubbed and single | |
| forward is run on the same resolution inputs. Hence we do several | |
| forward passes = number of different resolutions used. We then | |
| concatenate all the output features and run the head forward on these | |
| concatenated features. | |
| """ | |
| def __init__(self, backbone, head): | |
| super(MultiCropWrapper, self).__init__() | |
| # disable layers dedicated to ImageNet labels classification | |
| backbone.fc, backbone.head = nn.Identity(), nn.Identity() | |
| self.backbone = backbone | |
| self.head = head | |
| def forward(self, x): | |
| # convert to list | |
| if not isinstance(x, list): | |
| x = [x] | |
| idx_crops = torch.cumsum( | |
| torch.unique_consecutive( | |
| torch.tensor([inp.shape[-1] for inp in x]), | |
| return_counts=True, | |
| )[1], 0) | |
| start_idx, output = 0, torch.empty(0).to(x[0].device) | |
| for end_idx in idx_crops: | |
| _out = self.backbone(torch.cat(x[start_idx:end_idx])) | |
| # The output is a tuple with XCiT model. See: | |
| # https://github.com/facebookresearch/xcit/blob/master/xcit.py#L404-L405 | |
| if isinstance(_out, tuple): | |
| _out = _out[0] | |
| # accumulate outputs | |
| output = torch.cat((output, _out)) | |
| start_idx = end_idx | |
| # Run the head forward on the concatenated features. | |
| return self.head(output) | |
| def get_params_groups(model): | |
| regularized = [] | |
| not_regularized = [] | |
| for name, param in model.named_parameters(): | |
| if not param.requires_grad: | |
| continue | |
| # we do not regularize biases nor Norm parameters | |
| if name.endswith(".bias") or len(param.shape) == 1: | |
| not_regularized.append(param) | |
| else: | |
| regularized.append(param) | |
| return [{ | |
| 'params': regularized | |
| }, { | |
| 'params': not_regularized, | |
| 'weight_decay': 0. | |
| }] | |
| def has_batchnorms(model): | |
| bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, | |
| nn.SyncBatchNorm) | |
| for name, module in model.named_modules(): | |
| if isinstance(module, bn_types): | |
| return True | |
| return False | |
| class PCA(): | |
| """ | |
| Class to compute and apply PCA. | |
| """ | |
| def __init__(self, dim=256, whit=0.5): | |
| self.dim = dim | |
| self.whit = whit | |
| self.mean = None | |
| def train_pca(self, cov): | |
| """ | |
| Takes a covariance matrix (np.ndarray) as input. | |
| """ | |
| d, v = np.linalg.eigh(cov) | |
| eps = d.max() * 1e-5 | |
| n_0 = (d < eps).sum() | |
| if n_0 > 0: | |
| d[d < eps] = eps | |
| # total energy | |
| totenergy = d.sum() | |
| # sort eigenvectors with eigenvalues order | |
| idx = np.argsort(d)[::-1][:self.dim] | |
| d = d[idx] | |
| v = v[:, idx] | |
| print("keeping %.2f %% of the energy" % (d.sum() / totenergy * 100.0)) | |
| # for the whitening | |
| d = np.diag(1. / d**self.whit) | |
| # principal components | |
| self.dvt = np.dot(d, v.T) | |
| def apply(self, x): | |
| # input is from numpy | |
| if isinstance(x, np.ndarray): | |
| if self.mean is not None: | |
| x -= self.mean | |
| return np.dot(self.dvt, x.T).T | |
| # input is from torch and is on GPU | |
| if x.is_cuda: | |
| if self.mean is not None: | |
| x -= torch.cuda.FloatTensor(self.mean) | |
| return torch.mm(torch.cuda.FloatTensor(self.dvt), | |
| x.transpose(0, 1)).transpose(0, 1) | |
| # input if from torch, on CPU | |
| if self.mean is not None: | |
| x -= torch.FloatTensor(self.mean) | |
| return torch.mm(torch.FloatTensor(self.dvt), | |
| x.transpose(0, 1)).transpose(0, 1) | |
| def compute_ap(ranks, nres): | |
| """ | |
| Computes average precision for given ranked indexes. | |
| Arguments | |
| --------- | |
| ranks : zerro-based ranks of positive images | |
| nres : number of positive images | |
| Returns | |
| ------- | |
| ap : average precision | |
| """ | |
| # number of images ranked by the system | |
| nimgranks = len(ranks) | |
| # accumulate trapezoids in PR-plot | |
| ap = 0 | |
| recall_step = 1. / nres | |
| for j in np.arange(nimgranks): | |
| rank = ranks[j] | |
| if rank == 0: | |
| precision_0 = 1. | |
| else: | |
| precision_0 = float(j) / rank | |
| precision_1 = float(j + 1) / (rank + 1) | |
| ap += (precision_0 + precision_1) * recall_step / 2. | |
| return ap | |
| def compute_map(ranks, gnd, kappas=[]): | |
| """ | |
| Computes the mAP for a given set of returned results. | |
| Usage: | |
| map = compute_map (ranks, gnd) | |
| computes mean average precsion (map) only | |
| map, aps, pr, prs = compute_map (ranks, gnd, kappas) | |
| computes mean average precision (map), average precision (aps) for each query | |
| computes mean precision at kappas (pr), precision at kappas (prs) for each query | |
| Notes: | |
| 1) ranks starts from 0, ranks.shape = db_size X #queries | |
| 2) The junk results (e.g., the query itself) should be declared in the gnd stuct array | |
| 3) If there are no positive images for some query, that query is excluded from the evaluation | |
| """ | |
| map = 0. | |
| nq = len(gnd) # number of queries | |
| aps = np.zeros(nq) | |
| pr = np.zeros(len(kappas)) | |
| prs = np.zeros((nq, len(kappas))) | |
| nempty = 0 | |
| for i in np.arange(nq): | |
| qgnd = np.array(gnd[i]['ok']) | |
| # no positive images, skip from the average | |
| if qgnd.shape[0] == 0: | |
| aps[i] = float('nan') | |
| prs[i, :] = float('nan') | |
| nempty += 1 | |
| continue | |
| try: | |
| qgndj = np.array(gnd[i]['junk']) | |
| except: | |
| qgndj = np.empty(0) | |
| # sorted positions of positive and junk images (0 based) | |
| pos = np.arange(ranks.shape[0])[np.in1d(ranks[:, i], qgnd)] | |
| junk = np.arange(ranks.shape[0])[np.in1d(ranks[:, i], qgndj)] | |
| k = 0 | |
| ij = 0 | |
| if len(junk): | |
| # decrease positions of positives based on the number of | |
| # junk images appearing before them | |
| ip = 0 | |
| while (ip < len(pos)): | |
| while (ij < len(junk) and pos[ip] > junk[ij]): | |
| k += 1 | |
| ij += 1 | |
| pos[ip] = pos[ip] - k | |
| ip += 1 | |
| # compute ap | |
| ap = compute_ap(pos, len(qgnd)) | |
| map = map + ap | |
| aps[i] = ap | |
| # compute precision @ k | |
| pos += 1 # get it to 1-based | |
| for j in np.arange(len(kappas)): | |
| kq = min(max(pos), kappas[j]) | |
| prs[i, j] = (pos <= kq).sum() / kq | |
| pr = pr + prs[i, :] | |
| map = map / (nq - nempty) | |
| pr = pr / (nq - nempty) | |
| return map, aps, pr, prs | |
| def multi_scale(samples, model): | |
| v = None | |
| for s in [1, 1 / 2**(1 / 2), 1 / 2]: # we use 3 different scales | |
| if s == 1: | |
| inp = samples.clone() | |
| else: | |
| inp = nn.functional.interpolate(samples, | |
| scale_factor=s, | |
| mode='bilinear', | |
| align_corners=False) | |
| feats = model(inp).clone() | |
| if v is None: | |
| v = feats | |
| else: | |
| v += feats | |
| v /= 3 | |
| v /= v.norm() | |
| return v |