Spaces:
Running
on
Zero
Running
on
Zero
NIRVANALAN
commited on
Commit
·
14db06e
1
Parent(s):
f944436
update
Browse files- app.py +7 -2
- dit/__pycache__/dit_decoder.cpython-310.pyc +0 -0
- dit/__pycache__/dit_i23d.cpython-310.pyc +0 -0
- dit/__pycache__/dit_models_xformers.cpython-310.pyc +0 -0
- dit/__pycache__/dit_trilatent.cpython-310.pyc +0 -0
- dit/__pycache__/norm.cpython-310.pyc +0 -0
- ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
- logs/LSGM/inference/Objaverse/i23d/dit-L2/log.txt +294 -0
- logs/LSGM/inference/Objaverse/i23d/dit-L2/progress.csv +0 -0
- nsr/__pycache__/train_util_diffusion.cpython-310.pyc +0 -0
- vit/__pycache__/vision_transformer.cpython-310.pyc +0 -0
app.py
CHANGED
|
@@ -106,10 +106,15 @@ def check_input_image(input_image):
|
|
| 106 |
|
| 107 |
|
| 108 |
def main(args):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
# args.rendering_kwargs = rendering_options_defaults(args)
|
| 111 |
|
| 112 |
-
|
| 113 |
logger.configure(dir=args.logdir)
|
| 114 |
|
| 115 |
th.cuda.empty_cache()
|
|
@@ -207,7 +212,7 @@ def main(args):
|
|
| 207 |
loss_class=None,
|
| 208 |
data=data,
|
| 209 |
eval_data=None,
|
| 210 |
-
**
|
| 211 |
|
| 212 |
@spaces.GPU(duration=200)
|
| 213 |
def reconstruct_and_export(*args, **kwargs):
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
def main(args):
|
| 109 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
| 110 |
+
os.environ['MASTER_PORT'] = '12355'
|
| 111 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 112 |
+
os.environ["RANK"] = "0"
|
| 113 |
+
os.environ["WORLD_SIZE"] = "1"
|
| 114 |
|
| 115 |
# args.rendering_kwargs = rendering_options_defaults(args)
|
| 116 |
|
| 117 |
+
dist_util.setup_dist(args)
|
| 118 |
logger.configure(dir=args.logdir)
|
| 119 |
|
| 120 |
th.cuda.empty_cache()
|
|
|
|
| 212 |
loss_class=None,
|
| 213 |
data=data,
|
| 214 |
eval_data=None,
|
| 215 |
+
**args)
|
| 216 |
|
| 217 |
@spaces.GPU(duration=200)
|
| 218 |
def reconstruct_and_export(*args, **kwargs):
|
dit/__pycache__/dit_decoder.cpython-310.pyc
ADDED
|
Binary file (5.97 kB). View file
|
|
|
dit/__pycache__/dit_i23d.cpython-310.pyc
CHANGED
|
Binary files a/dit/__pycache__/dit_i23d.cpython-310.pyc and b/dit/__pycache__/dit_i23d.cpython-310.pyc differ
|
|
|
dit/__pycache__/dit_models_xformers.cpython-310.pyc
CHANGED
|
Binary files a/dit/__pycache__/dit_models_xformers.cpython-310.pyc and b/dit/__pycache__/dit_models_xformers.cpython-310.pyc differ
|
|
|
dit/__pycache__/dit_trilatent.cpython-310.pyc
CHANGED
|
Binary files a/dit/__pycache__/dit_trilatent.cpython-310.pyc and b/dit/__pycache__/dit_trilatent.cpython-310.pyc differ
|
|
|
dit/__pycache__/norm.cpython-310.pyc
ADDED
|
Binary file (1.14 kB). View file
|
|
|
ldm/modules/__pycache__/attention.cpython-310.pyc
CHANGED
|
Binary files a/ldm/modules/__pycache__/attention.cpython-310.pyc and b/ldm/modules/__pycache__/attention.cpython-310.pyc differ
|
|
|
logs/LSGM/inference/Objaverse/i23d/dit-L2/log.txt
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Logging to ./logs/LSGM/inference/Objaverse/i23d/dit-L2/
|
| 2 |
+
creating model and diffusion...
|
| 3 |
+
creating 3DAE...
|
| 4 |
+
length of vit_decoder.blocks: 24
|
| 5 |
+
init pos_embed with sincos
|
| 6 |
+
length of vit_decoder.blocks: 24
|
| 7 |
+
ignore dim_up_mlp: True
|
| 8 |
+
AE(
|
| 9 |
+
(encoder): MVEncoderGSDynamicInp(
|
| 10 |
+
(conv_in): Conv2d(10, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 11 |
+
(down): ModuleList(
|
| 12 |
+
(0): Module(
|
| 13 |
+
(block): ModuleList(
|
| 14 |
+
(0): ResnetBlock(
|
| 15 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 16 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 17 |
+
(norm2): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 18 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 19 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 20 |
+
)
|
| 21 |
+
)
|
| 22 |
+
(attn): ModuleList()
|
| 23 |
+
(downsample): Downsample(
|
| 24 |
+
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2))
|
| 25 |
+
)
|
| 26 |
+
)
|
| 27 |
+
(1): Module(
|
| 28 |
+
(block): ModuleList(
|
| 29 |
+
(0): ResnetBlock(
|
| 30 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 31 |
+
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 32 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 33 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 34 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 35 |
+
(nin_shortcut): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
|
| 36 |
+
)
|
| 37 |
+
)
|
| 38 |
+
(attn): ModuleList()
|
| 39 |
+
(downsample): Downsample(
|
| 40 |
+
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2))
|
| 41 |
+
)
|
| 42 |
+
)
|
| 43 |
+
(2): Module(
|
| 44 |
+
(block): ModuleList(
|
| 45 |
+
(0): ResnetBlock(
|
| 46 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 47 |
+
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 48 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 49 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 50 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 51 |
+
(nin_shortcut): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 52 |
+
)
|
| 53 |
+
)
|
| 54 |
+
(attn): ModuleList()
|
| 55 |
+
(downsample): Downsample(
|
| 56 |
+
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2))
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
(3): Module(
|
| 60 |
+
(block): ModuleList(
|
| 61 |
+
(0): ResnetBlock(
|
| 62 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 63 |
+
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 64 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 65 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 66 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 67 |
+
)
|
| 68 |
+
)
|
| 69 |
+
(attn): ModuleList()
|
| 70 |
+
)
|
| 71 |
+
)
|
| 72 |
+
(mid): Module(
|
| 73 |
+
(block_1): ResnetBlock(
|
| 74 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 75 |
+
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 76 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 77 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 78 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 79 |
+
)
|
| 80 |
+
(attn_1): SpatialTransformer3D(
|
| 81 |
+
(norm): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 82 |
+
(proj_in): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1))
|
| 83 |
+
(transformer_blocks): ModuleList(
|
| 84 |
+
(0): BasicTransformerBlock3D(
|
| 85 |
+
(attn1): MemoryEfficientCrossAttention(
|
| 86 |
+
(to_q): Linear(in_features=512, out_features=512, bias=False)
|
| 87 |
+
(to_k): Linear(in_features=512, out_features=512, bias=False)
|
| 88 |
+
(q_norm): Identity()
|
| 89 |
+
(k_norm): Identity()
|
| 90 |
+
(to_v): Linear(in_features=512, out_features=512, bias=False)
|
| 91 |
+
(to_out): Sequential(
|
| 92 |
+
(0): Linear(in_features=512, out_features=512, bias=True)
|
| 93 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 94 |
+
)
|
| 95 |
+
)
|
| 96 |
+
(ff): FeedForward(
|
| 97 |
+
(net): Sequential(
|
| 98 |
+
(0): GEGLU(
|
| 99 |
+
(proj): Linear(in_features=512, out_features=4096, bias=True)
|
| 100 |
+
)
|
| 101 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 102 |
+
(2): Linear(in_features=2048, out_features=512, bias=True)
|
| 103 |
+
)
|
| 104 |
+
)
|
| 105 |
+
(attn2): MemoryEfficientCrossAttention(
|
| 106 |
+
(to_q): Linear(in_features=512, out_features=512, bias=False)
|
| 107 |
+
(to_k): Linear(in_features=512, out_features=512, bias=False)
|
| 108 |
+
(q_norm): Identity()
|
| 109 |
+
(k_norm): Identity()
|
| 110 |
+
(to_v): Linear(in_features=512, out_features=512, bias=False)
|
| 111 |
+
(to_out): Sequential(
|
| 112 |
+
(0): Linear(in_features=512, out_features=512, bias=True)
|
| 113 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 114 |
+
)
|
| 115 |
+
)
|
| 116 |
+
(norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
| 117 |
+
(norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
| 118 |
+
(norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
| 119 |
+
)
|
| 120 |
+
)
|
| 121 |
+
(proj_out): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 122 |
+
)
|
| 123 |
+
(block_2): ResnetBlock(
|
| 124 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 125 |
+
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 126 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 127 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 128 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 129 |
+
)
|
| 130 |
+
)
|
| 131 |
+
(norm_out): GroupNorm(32, 256, eps=1e-06, affine=True)
|
| 132 |
+
(conv_out): Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 133 |
+
)
|
| 134 |
+
(decoder): RodinSR_256_fusionv6_ConvQuant_liteSR_dinoInit3DAttn_SD_B_3L_C_withrollout_withSD_D_ditDecoder(
|
| 135 |
+
(superresolution): ModuleDict(
|
| 136 |
+
(ldm_upsample): PatchEmbedTriplane(
|
| 137 |
+
(proj): Conv2d(12, 3072, kernel_size=(2, 2), stride=(2, 2), groups=3)
|
| 138 |
+
(norm): Identity()
|
| 139 |
+
)
|
| 140 |
+
(quant_conv): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), groups=3)
|
| 141 |
+
(conv_sr): Decoder(
|
| 142 |
+
(conv_in): Conv2d(1024, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 143 |
+
(mid): Module(
|
| 144 |
+
(block_1): ResnetBlock(
|
| 145 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 146 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 147 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 148 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 149 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 150 |
+
)
|
| 151 |
+
(attn_1): MemoryEfficientAttnBlock(
|
| 152 |
+
(norm): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 153 |
+
(q): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
| 154 |
+
(k): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
| 155 |
+
(v): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
| 156 |
+
(proj_out): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
| 157 |
+
)
|
| 158 |
+
(block_2): ResnetBlock(
|
| 159 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 160 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 161 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 162 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 163 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 164 |
+
)
|
| 165 |
+
)
|
| 166 |
+
(up): ModuleList(
|
| 167 |
+
(0): Module(
|
| 168 |
+
(block): ModuleList(
|
| 169 |
+
(0): ResnetBlock(
|
| 170 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 171 |
+
(conv1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 172 |
+
(norm2): GroupNorm(32, 32, eps=1e-06, affine=True)
|
| 173 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 174 |
+
(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 175 |
+
(nin_shortcut): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
|
| 176 |
+
)
|
| 177 |
+
(1): ResnetBlock(
|
| 178 |
+
(norm1): GroupNorm(32, 32, eps=1e-06, affine=True)
|
| 179 |
+
(conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 180 |
+
(norm2): GroupNorm(32, 32, eps=1e-06, affine=True)
|
| 181 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 182 |
+
(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 183 |
+
)
|
| 184 |
+
)
|
| 185 |
+
(attn): ModuleList()
|
| 186 |
+
)
|
| 187 |
+
(1): Module(
|
| 188 |
+
(block): ModuleList(
|
| 189 |
+
(0-1): 2 x ResnetBlock(
|
| 190 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 191 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 192 |
+
(norm2): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 193 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 194 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 195 |
+
)
|
| 196 |
+
)
|
| 197 |
+
(attn): ModuleList()
|
| 198 |
+
(upsample): Upsample(
|
| 199 |
+
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 200 |
+
)
|
| 201 |
+
)
|
| 202 |
+
(2): Module(
|
| 203 |
+
(block): ModuleList(
|
| 204 |
+
(0): ResnetBlock(
|
| 205 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 206 |
+
(conv1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 207 |
+
(norm2): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 208 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 209 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 210 |
+
(nin_shortcut): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
|
| 211 |
+
)
|
| 212 |
+
(1): ResnetBlock(
|
| 213 |
+
(norm1): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 214 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 215 |
+
(norm2): GroupNorm(32, 64, eps=1e-06, affine=True)
|
| 216 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 217 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 218 |
+
)
|
| 219 |
+
)
|
| 220 |
+
(attn): ModuleList()
|
| 221 |
+
(upsample): Upsample(
|
| 222 |
+
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 223 |
+
)
|
| 224 |
+
)
|
| 225 |
+
(3): Module(
|
| 226 |
+
(block): ModuleList(
|
| 227 |
+
(0-1): 2 x ResnetBlock(
|
| 228 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 229 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 230 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
| 231 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
| 232 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 233 |
+
)
|
| 234 |
+
)
|
| 235 |
+
(attn): ModuleList()
|
| 236 |
+
(upsample): Upsample(
|
| 237 |
+
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 238 |
+
)
|
| 239 |
+
)
|
| 240 |
+
)
|
| 241 |
+
(norm_out): GroupNorm(32, 32, eps=1e-06, affine=True)
|
| 242 |
+
(conv_out): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 243 |
+
)
|
| 244 |
+
)
|
| 245 |
+
(vit_decoder): DiT2(
|
| 246 |
+
(blocks): ModuleList(
|
| 247 |
+
(0-23): 24 x DiTBlock2(
|
| 248 |
+
(norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=False)
|
| 249 |
+
(norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=False)
|
| 250 |
+
(attn): MemEffAttention(
|
| 251 |
+
(qkv): Linear(in_features=1024, out_features=3072, bias=True)
|
| 252 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
| 253 |
+
(proj): Linear(in_features=1024, out_features=1024, bias=True)
|
| 254 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
| 255 |
+
(q_norm): Identity()
|
| 256 |
+
(k_norm): Identity()
|
| 257 |
+
)
|
| 258 |
+
(mlp): FusedMLP(
|
| 259 |
+
(mlp): Sequential(
|
| 260 |
+
(0): Linear(in_features=1024, out_features=4096, bias=False)
|
| 261 |
+
(1): FusedDropoutBias(
|
| 262 |
+
(activation_pytorch): GELU(approximate='none')
|
| 263 |
+
)
|
| 264 |
+
(2): Linear(in_features=4096, out_features=1024, bias=False)
|
| 265 |
+
(3): FusedDropoutBias(
|
| 266 |
+
(activation_pytorch): Identity()
|
| 267 |
+
)
|
| 268 |
+
)
|
| 269 |
+
)
|
| 270 |
+
(adaLN_modulation): Sequential(
|
| 271 |
+
(0): SiLU()
|
| 272 |
+
(1): Linear(in_features=1024, out_features=6144, bias=True)
|
| 273 |
+
)
|
| 274 |
+
)
|
| 275 |
+
)
|
| 276 |
+
)
|
| 277 |
+
(triplane_decoder): Triplane(
|
| 278 |
+
(renderer): ImportanceRenderer(
|
| 279 |
+
(ray_marcher): MipRayMarcher2()
|
| 280 |
+
)
|
| 281 |
+
(ray_sampler): PatchRaySampler()
|
| 282 |
+
(decoder): OSGDecoder(
|
| 283 |
+
(net): Sequential(
|
| 284 |
+
(0): FullyConnectedLayer(in_features=32, out_features=64, activation=linear)
|
| 285 |
+
(1): Softplus(beta=1.0, threshold=20.0)
|
| 286 |
+
(2): FullyConnectedLayer(in_features=64, out_features=4, activation=linear)
|
| 287 |
+
)
|
| 288 |
+
)
|
| 289 |
+
)
|
| 290 |
+
(decoder_pred): None
|
| 291 |
+
)
|
| 292 |
+
)
|
| 293 |
+
create dataset
|
| 294 |
+
joint_denoise_rec_model enables AMP to accelerate training
|
logs/LSGM/inference/Objaverse/i23d/dit-L2/progress.csv
ADDED
|
File without changes
|
nsr/__pycache__/train_util_diffusion.cpython-310.pyc
CHANGED
|
Binary files a/nsr/__pycache__/train_util_diffusion.cpython-310.pyc and b/nsr/__pycache__/train_util_diffusion.cpython-310.pyc differ
|
|
|
vit/__pycache__/vision_transformer.cpython-310.pyc
CHANGED
|
Binary files a/vit/__pycache__/vision_transformer.cpython-310.pyc and b/vit/__pycache__/vision_transformer.cpython-310.pyc differ
|
|
|