File size: 6,098 Bytes
28c0435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdadca2
 
 
 
28c0435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdadca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c0435
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import ast

import pandas as pd

import streamlit as st

st.set_page_config(layout="wide")
SHORT_CAPTIONS = [
    'ALIGN:align-base:coyo700m', 'OpenCLIP:ViT-B-32:openai', 'OpenCLIP:ViT-B-16:openai',
    'OpenCLIP:ViT-L-14:openai', 'OpenCLIP:ViT-L-14-336:openai',
    'OpenCLIP:ViT-B-32:laion2b_s34b_b79k', 'OpenCLIP:ViT-B-16:laion2b_s34b_b88k',
    'OpenCLIP:ViT-L-14:laion2b_s32b_b82k', 'OpenCLIP:ViT-g-14:laion2b_s34b_b88k',
    'OpenCLIP:ViT-H-14:laion2b_s32b_b79k', 'OpenCLIP:roberta-ViT-B-32:laion2b_s12b_b32k',
    'OpenCLIP:ViT-B-16-SigLIP:webli', 'OpenCLIP:ViT-B-16-SigLIP-384:webli',
    'OpenCLIP:ViT-L-16-SigLIP-256:webli', 'OpenCLIP:ViT-L-16-SigLIP-384:webli',
    'OpenCLIP:ViT-SO400M-14-SigLIP:webli', 'OpenCLIP:coca_ViT-B-32:laion2b_s13b_b90k',
    'OpenCLIP:coca_ViT-L-14:laion2b_s13b_b90k'
]
LONG_CAPTIONS = [
    'DreamLIP:dreamlip-vitb16:cc3m-long', 'DreamLIP:dreamlip-vitb16:cc12m-long',
    'DreamLIP:dreamlip-vitb16:yfcc15m-long', 'DreamLIP:dreamlip-vitb16:cc30m-long',
    'CLIPS:CLIPS-Large-14-224:recap-datacomp1b', 'CLIPS:CLIPS-Large-14-336:recap-datacomp1b',
    'CLIPS:CLIPS-Huge-14-224:recap-datacomp1b', 'LoTLIP:LoTLIP-ViT-B-32:lotlip100m',
    'LoTLIP:LoTLIP-ViT-B-16:lotlip100m', 'Recap-CLIP:ViT-L-16-HTxt-Recap-CLIP:recap-datacomp1b',
    'LongCLIP:longclip-vitb32:sharegpt4v-1m', 'LongCLIP:longclip-vitb16:sharegpt4v-1m',
    'LongCLIP:longclip-vitl14:sharegpt4v-1m', 'LongCLIP:longclip-vitl14_336px:sharegpt4v-1m',
    'Jina-CLIP:jina-clip-v1:jinaai', 'Jina-CLIP:jina-clip-v2:jinaai'
]
COMPOSITIONALITY = [
    'OpenCLIP:ViT-B-32:openai', 'StructuredCLIP:NegCLIP-ViT-B-32:coco-ft',
    'StructuredCLIP:CE-CLIP-ViT-B-32:coco-ft', 'StructuredCLIP:DAC-LLM-ViT-B-32:cc3m-ft',
    'StructuredCLIP:DAC-SAM-ViT-B-32:cc3m-ft', 'FSC-CLIP:fsc-clip-ViT-B-32:laioncoco-ft',
    'FSC-CLIP:fsc-clip-ViT-B-16:laioncoco-ft', 'FSC-CLIP:fsc-clip-ViT-L-14:laioncoco-ft'
]

MODEL_GROUPS = {
    "short_captions": SHORT_CAPTIONS,
    "long_captions": LONG_CAPTIONS,
    "compositionality": COMPOSITIONALITY
}


def render_mi_table(df, level0_cols):
    # HTML 스타일 정의
    table_style = """

    <style>

        table {

            width: 100%;

            border-collapse: collapse;

        }

        th, td {

            border: 1px solid black;

            text-align: center;

            padding: 8px;

        }

        th {

            background-color: #262730;

        }

    </style>

    """

    # 상위 헤더 (레벨 0)
    header_html = "<tr>"
    for col in level0_cols:
        colspan = len(df.xs(col, axis=1, level=0).columns) if col else 1
        header_html += f'<th colspan="{colspan}" style="text-align: center;">{col if col else ""}</th>'
    header_html += "</tr>"

    # 하위 헤더 (레벨 1)
    sub_header_html = "<tr>"
    for col in df.columns:
        sub_header_html += f"<th style='text-align: center;'>{col[1] if len(col) > 1 else col[0]}</th>"
    sub_header_html += "</tr>"

    # 데이터 HTML 생성
    def map_val(value):
        try:
            value = f"{float(value):.1f}"
        except:
            value = value
        return value

    rows_html = ""
    for _, row in df.iterrows():

        rows_html += "<tr>" + "".join(f"<td>{map_val(value)}</td>" for value in row) + "</tr>"

    # 최종 HTML 합치기
    table_html = f"""

    {table_style}

    <table>

        {header_html}

        {sub_header_html}

        {rows_html}

    </table>

    """
    return table_html


def format_df(df):
    cols = []
    for col in df.columns:
        if col in [("Model", "family"), ("Model", "model"), ("Model", "tag")]:
            continue
        cols.append(col)
    formatted_df = df.style.format({col: "{:.1f}" for col in cols})
    return formatted_df


def print_table(df):
    level0_cols = []
    for col in df.columns:
        if col[0] not in level0_cols:
            level0_cols.append(col[0])
    st.markdown(render_mi_table(df, level0_cols), unsafe_allow_html=True)


def get_model_key_from_df(df, model_names):
    columns = [("Model", "family"), ("Model", "model"), ("Model", "tag")]
    named_rows = df[columns].apply(lambda row: ":".join(row), axis=1)
    new_rows = []
    for name in model_names:
        new_rows.append(df[named_rows == name])
    new_rows = pd.concat(new_rows, axis=0)
    new_rows.columns = pd.MultiIndex.from_tuples(new_rows.columns)
    print_table(new_rows)


# Streamlit app
def main():
    st.title("Interface")
    df = pd.read_csv("data/250116/summary.csv")
    df.columns = [ast.literal_eval(col) for col in df.columns]
    for group, model_names in MODEL_GROUPS.items():
        st.markdown(f"## {group} models")
        if group == "short_captions":
            st.markdown(
                "- **Length group**: 이미 short group부터, 80<(Num_tokens)<120. 중간에 문장 더해졌으면 60-70%정도 맞추고, 끝에 문장 더해졌으면 애초에 added sentence encoding 불가 -> accuracy 0%"
            )
            st.markdown(
                "- **neg_target**: description의 끝 (=background)에 sentence 더해진 경우 accuracy 0%"
            )
            st.markdown("- **neg_type**: contradictory sentence가 모델 입장에서 맞추기 더 어려움")

        if group == "long_captions":
            st.markdown(
                "- **Length group**: 모델의 context length에 성능 심하게 dependent함. DreamLIP: 77, CLIPS: 80, LoTLIP: 128, Recap-CLIP: 128, LongCLIP: 248, Jina-CLIP: 512"
            )
            st.markdown("- **neg_target**: 여전히 background level에서 sentence 더해진게 전반적으로 어려움")
            st.markdown("- **neg_type**: contradictory sentence가 모델 입장에서 맞추기 더 어려움")
        if group == "compositionality":
            st.markdown("- context length 77의 한계. Hard Negative Caption으로 Fine-tuning 하면 일부 좋아짐")
        get_model_key_from_df(df, model_names)


if __name__ == "__main__":
    main()