File size: 5,961 Bytes
4946c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import ast

import pandas as pd

import streamlit as st

st.set_page_config(layout="wide")
SHORT_CAPTIONS = [
    'ALIGN:align-base:coyo700m', 'OpenCLIP:ViT-B-32:openai', 'OpenCLIP:ViT-B-16:openai',
    'OpenCLIP:ViT-L-14:openai', 'OpenCLIP:ViT-L-14-336:openai',
    'OpenCLIP:ViT-B-32:laion2b_s34b_b79k', 'OpenCLIP:ViT-B-16:laion2b_s34b_b88k',
    'OpenCLIP:ViT-L-14:laion2b_s32b_b82k', 'OpenCLIP:ViT-g-14:laion2b_s34b_b88k',
    'OpenCLIP:ViT-H-14:laion2b_s32b_b79k', 'OpenCLIP:roberta-ViT-B-32:laion2b_s12b_b32k',
    'OpenCLIP:ViT-B-16-SigLIP:webli', 'OpenCLIP:ViT-B-16-SigLIP-384:webli',
    'OpenCLIP:ViT-L-16-SigLIP-256:webli', 'OpenCLIP:ViT-L-16-SigLIP-384:webli',
    'OpenCLIP:ViT-SO400M-14-SigLIP:webli', 'OpenCLIP:coca_ViT-B-32:laion2b_s13b_b90k',
    'OpenCLIP:coca_ViT-L-14:laion2b_s13b_b90k'
]
LONG_CAPTIONS = [
    'DreamLIP:dreamlip-vitb16:cc3m-long', 'DreamLIP:dreamlip-vitb16:cc12m-long',
    'DreamLIP:dreamlip-vitb16:yfcc15m-long', 'DreamLIP:dreamlip-vitb16:cc30m-long',
    "FLAIR:flair-vitb16:cc3m-recap", "FLAIR:flair-vitb16:cc12m-recap",
    "FLAIR:flair-vitb16:yfcc15m-recap", "FLAIR:flair-vitb16:cc30m-recap",
    'CLIPS:CLIPS-Large-14-224:recap-datacomp1b', 'CLIPS:CLIPS-Large-14-336:recap-datacomp1b',
    'CLIPS:CLIPS-Huge-14-224:recap-datacomp1b', 'LoTLIP:LoTLIP-ViT-B-32:lotlip100m',
    'LoTLIP:LoTLIP-ViT-B-16:lotlip100m', 'Recap-CLIP:ViT-L-16-HTxt-Recap-CLIP:recap-datacomp1b',
    'LongCLIP:longclip-vitb32:sharegpt4v-1m', 'LongCLIP:longclip-vitb16:sharegpt4v-1m',
    'LongCLIP:longclip-vitl14:sharegpt4v-1m', 'LongCLIP:longclip-vitl14_336px:sharegpt4v-1m',
    'Jina-CLIP:jina-clip-v1:jinaai', 'Jina-CLIP:jina-clip-v2:jinaai'
]
COMPOSITIONALITY = [
    'OpenCLIP:ViT-B-32:openai', 'StructuredCLIP:NegCLIP-ViT-B-32:coco-ft',
    'StructuredCLIP:CE-CLIP-ViT-B-32:coco-ft', 'StructuredCLIP:DAC-LLM-ViT-B-32:cc3m-ft',
    'StructuredCLIP:DAC-SAM-ViT-B-32:cc3m-ft', 'FSC-CLIP:fsc-clip-ViT-B-32:laioncoco-ft',
    'FSC-CLIP:fsc-clip-ViT-B-16:laioncoco-ft', 'FSC-CLIP:fsc-clip-ViT-L-14:laioncoco-ft'
]

DECODERS = [
    'vqascore:instructblip-flant5-xl:none', 'vqascore:clip-flant5-xl:none',
    'vqascore:llava-v1.5-7b:none', 'vqascore:sharegpt4v-7b:none',
    'visualgptscore:instructblip-flant5-xl:none', 'visualgptscore:clip-flant5-xl:none',
    'visualgptscore:llava-v1.5-7b:none', 'visualgptscore:sharegpt4v-7b:none'
]

MODEL_GROUPS = {
    "short_captions": SHORT_CAPTIONS,
    "long_captions": LONG_CAPTIONS,
    "compositionality": COMPOSITIONALITY
}


def render_mi_table(df, level0_cols):
    # HTML 스타일 정의
    table_style = """

    <style>

        table {

            width: 100%;

            border-collapse: collapse;

        }

        th, td {

            border: 1px solid black;

            text-align: center;

            padding: 8px;

        }

        th {

            background-color: #262730;

        }

    </style>

    """

    # 상위 헤더 (레벨 0)
    header_html = "<tr>"
    for col in level0_cols:
        colspan = len(df.xs(col, axis=1, level=0).columns) if col else 1
        header_html += f'<th colspan="{colspan}" style="text-align: center;">{col if col else ""}</th>'
    header_html += "</tr>"

    # 하위 헤더 (레벨 1)
    sub_header_html = "<tr>"
    for col in df.columns:
        sub_header_html += f"<th style='text-align: center;'>{col[1] if len(col) > 1 else col[0]}</th>"
    sub_header_html += "</tr>"

    # 데이터 HTML 생성
    def map_val(value):
        try:
            value = f"{float(value):.1f}"
        except:
            value = value
        return value

    rows_html = ""
    for _, row in df.iterrows():

        rows_html += "<tr>" + "".join(f"<td>{map_val(value)}</td>" for value in row) + "</tr>"

    # 최종 HTML 합치기
    table_html = f"""

    {table_style}

    <table>

        {header_html}

        {sub_header_html}

        {rows_html}

    </table>

    """
    return table_html


def format_df(df):
    cols = []
    for col in df.columns:
        if col in [("Model", "family"), ("Model", "model"), ("Model", "tag")]:
            continue
        cols.append(col)
    formatted_df = df.style.format({col: "{:.1f}" for col in cols})
    return formatted_df


def print_table(df):
    level0_cols = []
    for col in df.columns:
        if col[0] not in level0_cols:
            level0_cols.append(col[0])
    st.markdown(render_mi_table(df, level0_cols), unsafe_allow_html=True)


def print_table_summary(df, model_names):
    columns = [("Model", "family"), ("Model", "model"), ("Model", "tag")]
    named_rows = df[columns].apply(lambda row: ":".join(row), axis=1)
    new_rows = []
    for name in model_names:
        new_rows.append(df[named_rows == name])
    new_rows = pd.concat(new_rows, axis=0)
    new_rows.columns = pd.MultiIndex.from_tuples(new_rows.columns)
    print_table(new_rows)


# Streamlit app
def main():
    st.title("Interface")
    df = pd.read_csv("data/250126/summary.csv")
    df.columns = [ast.literal_eval(col) for col in df.columns]
    for group, model_names in MODEL_GROUPS.items():
        st.markdown(f"## {group} models")
        if group == "short_captions":
            pass

        if group == "long_captions":
            pass
        if group == "compositionality":
            pass
        print_table_summary(df, model_names)

    df = pd.read_csv("data/250126/decoder_summary_valid.csv")
    df.columns = [ast.literal_eval(col) for col in df.columns]
    st.markdown("## Decoder-based models (VALID SAMPLES)")
    print_table_summary(df, DECODERS)

    df = pd.read_csv("data/250126/decoder_summary_invalid.csv")
    df.columns = [ast.literal_eval(col) for col in df.columns]
    st.markdown("## Decoder-based models (INVALID SAMPLES)")
    print_table_summary(df, DECODERS)


if __name__ == "__main__":
    main()