Spaces:
Running
on
Zero
Running
on
Zero
yuhangzang
commited on
Commit
·
67b36a4
1
Parent(s):
12e3e78
update
Browse files- .gitattributes +4 -0
- README.md +23 -0
- app.py +216 -0
- examples/example_0.png +3 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -12,3 +12,26 @@ short_description: ' A unified framework for reasoning and reward modeling'
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 15 |
+
|
| 16 |
+
## 使用说明(ZeroGPU)
|
| 17 |
+
|
| 18 |
+
- Space 类型选择 `Gradio`,硬件选择 `ZeroGPU`(需要 PRO 或企业组织)。
|
| 19 |
+
- 本仓库包含一个最小可用的 Spark-VL 演示:上传图片 + 输入文本,返回模型生成结果。
|
| 20 |
+
- 关键代码在 `app.py`:
|
| 21 |
+
- 使用 `spaces.GPU` 装饰推理函数,调用时申请 GPU,用完后释放。
|
| 22 |
+
- 首次调用按需加载 `internlm/Spark-VL-7B`,优先尝试 `flash_attention_2`,失败则回退到 `eager`。
|
| 23 |
+
- 推理结束把模型移回 CPU,快速释放 ZeroGPU 显存。
|
| 24 |
+
|
| 25 |
+
### 本地/Space 运行
|
| 26 |
+
|
| 27 |
+
1) 推送到 Hugging Face Space 后,在 Space 设置中选择硬件 `ZeroGPU`。
|
| 28 |
+
|
| 29 |
+
2) 运行入口:`app.py`,界面包含:图片、提示词、采样参数(max_new_tokens/temperature/top_p/top_k)。
|
| 30 |
+
|
| 31 |
+
3) 可选环境变量:
|
| 32 |
+
- `SPARK_MODEL_ID`:默认 `internlm/Spark-VL-7B`。
|
| 33 |
+
- `ATTN_IMPL`:默认 `flash_attention_2`,可改为 `eager`。
|
| 34 |
+
|
| 35 |
+
### 依赖
|
| 36 |
+
|
| 37 |
+
见 `requirements.txt`(Gradio 5.x,Transformers 4.45+,qwen-vl-utils 等)。ZeroGPU 的基础镜像已包含合适的 PyTorch 版本。
|
app.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import glob
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import spaces
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 11 |
+
|
| 12 |
+
MODEL_ID = os.environ.get("SPARK_MODEL_ID", "internlm/Spark-VL-7B")
|
| 13 |
+
DTYPE = torch.bfloat16
|
| 14 |
+
|
| 15 |
+
_model = None
|
| 16 |
+
_processor = None
|
| 17 |
+
_attn_impl = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def _load_model_and_processor():
|
| 21 |
+
global _model, _processor, _attn_impl
|
| 22 |
+
if _model is not None and _processor is not None:
|
| 23 |
+
return _model, _processor
|
| 24 |
+
|
| 25 |
+
# Prefer flash-attn if available, otherwise fall back to eager.
|
| 26 |
+
attn_impl = os.environ.get("ATTN_IMPL", "flash_attention_2")
|
| 27 |
+
try:
|
| 28 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 29 |
+
MODEL_ID,
|
| 30 |
+
torch_dtype=DTYPE,
|
| 31 |
+
attn_implementation=attn_impl,
|
| 32 |
+
device_map="auto",
|
| 33 |
+
)
|
| 34 |
+
_attn_impl = attn_impl
|
| 35 |
+
except Exception:
|
| 36 |
+
# Fallback for environments without flash-attn
|
| 37 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 38 |
+
MODEL_ID,
|
| 39 |
+
torch_dtype=DTYPE,
|
| 40 |
+
attn_implementation="eager",
|
| 41 |
+
device_map="auto",
|
| 42 |
+
)
|
| 43 |
+
_attn_impl = "eager"
|
| 44 |
+
|
| 45 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 46 |
+
|
| 47 |
+
_model = model
|
| 48 |
+
_processor = processor
|
| 49 |
+
return _model, _processor
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def _prepare_inputs(image, prompt):
|
| 53 |
+
messages = [
|
| 54 |
+
{
|
| 55 |
+
"role": "user",
|
| 56 |
+
"content": [
|
| 57 |
+
{"type": "image", "image": image},
|
| 58 |
+
{"type": "text", "text": prompt},
|
| 59 |
+
],
|
| 60 |
+
}
|
| 61 |
+
]
|
| 62 |
+
chat_text = _processor.apply_chat_template(
|
| 63 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 64 |
+
)
|
| 65 |
+
inputs = _processor(
|
| 66 |
+
text=[chat_text],
|
| 67 |
+
# Pass the single image directly; template contains <image> placeholder
|
| 68 |
+
images=[image] if image is not None else None,
|
| 69 |
+
return_tensors="pt",
|
| 70 |
+
)
|
| 71 |
+
return inputs
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def _decode(generated_ids, input_ids):
|
| 75 |
+
# Trim the prompt part before decoding
|
| 76 |
+
trimmed = generated_ids[:, input_ids.shape[1] :]
|
| 77 |
+
out = _processor.batch_decode(
|
| 78 |
+
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 79 |
+
)
|
| 80 |
+
return out[0] if out else ""
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@spaces.GPU(duration=120)
|
| 84 |
+
def generate(image, prompt, max_new_tokens, temperature, top_p, top_k):
|
| 85 |
+
if image is None:
|
| 86 |
+
return "Please upload an image."
|
| 87 |
+
prompt = (prompt or "").strip()
|
| 88 |
+
if not prompt:
|
| 89 |
+
return "Please enter a prompt."
|
| 90 |
+
|
| 91 |
+
start = time.time()
|
| 92 |
+
model, _ = _load_model_and_processor()
|
| 93 |
+
try:
|
| 94 |
+
# Ensure model resides on GPU during the call
|
| 95 |
+
p = next(model.parameters())
|
| 96 |
+
if p.device.type != "cuda":
|
| 97 |
+
model.to("cuda")
|
| 98 |
+
except StopIteration:
|
| 99 |
+
pass
|
| 100 |
+
|
| 101 |
+
try:
|
| 102 |
+
inputs = _prepare_inputs(image, prompt)
|
| 103 |
+
dev = next(model.parameters()).device
|
| 104 |
+
inputs = {k: v.to(dev) if hasattr(v, "to") else v for k, v in inputs.items()}
|
| 105 |
+
|
| 106 |
+
gen_kwargs = {
|
| 107 |
+
"max_new_tokens": int(max_new_tokens),
|
| 108 |
+
"do_sample": True,
|
| 109 |
+
"temperature": float(temperature),
|
| 110 |
+
"top_p": float(top_p),
|
| 111 |
+
"top_k": int(top_k),
|
| 112 |
+
"use_cache": True,
|
| 113 |
+
}
|
| 114 |
+
with torch.inference_mode():
|
| 115 |
+
out_ids = model.generate(**inputs, **gen_kwargs)
|
| 116 |
+
text = _decode(out_ids, inputs["input_ids"])
|
| 117 |
+
took = time.time() - start
|
| 118 |
+
return f"{text}\n\n[attn={_attn_impl}, time={took:.1f}s]"
|
| 119 |
+
except Exception as e:
|
| 120 |
+
return f"Inference failed: {type(e).__name__}: {e}"
|
| 121 |
+
finally:
|
| 122 |
+
# Release GPU quickly on ZeroGPU by moving weights off CUDA.
|
| 123 |
+
try:
|
| 124 |
+
if hasattr(model, "to"):
|
| 125 |
+
model.to("cpu")
|
| 126 |
+
torch.cuda.empty_cache()
|
| 127 |
+
except Exception:
|
| 128 |
+
pass
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def build_ui():
|
| 132 |
+
with gr.Blocks() as demo:
|
| 133 |
+
gr.Markdown("# Spark-VL ZeroGPU Demo\nUpload an image or choose from the example gallery, then enter a prompt.")
|
| 134 |
+
|
| 135 |
+
# Build an image gallery from ./examples
|
| 136 |
+
def _gather_examples() -> List[str]:
|
| 137 |
+
exts = ("*.jpg", "*.jpeg", "*.png", "*.webp")
|
| 138 |
+
imgs: List[str] = []
|
| 139 |
+
for ptn in exts:
|
| 140 |
+
imgs.extend(sorted(glob.glob(os.path.join("examples", ptn))))
|
| 141 |
+
# Deduplicate while keeping order
|
| 142 |
+
seen = set()
|
| 143 |
+
uniq = []
|
| 144 |
+
for p in imgs:
|
| 145 |
+
if p not in seen:
|
| 146 |
+
uniq.append(p)
|
| 147 |
+
seen.add(p)
|
| 148 |
+
return uniq
|
| 149 |
+
|
| 150 |
+
example_images = _gather_examples()
|
| 151 |
+
|
| 152 |
+
default_candidates = [
|
| 153 |
+
os.path.join("examples", "example_0.png"),
|
| 154 |
+
]
|
| 155 |
+
default_image_path = next((p for p in default_candidates if os.path.exists(p)), None)
|
| 156 |
+
default_image = Image.open(default_image_path) if default_image_path else None
|
| 157 |
+
|
| 158 |
+
with gr.Row():
|
| 159 |
+
with gr.Column(scale=1):
|
| 160 |
+
image = gr.Image(type="pil", label="Image", value=default_image)
|
| 161 |
+
gallery = gr.Gallery(
|
| 162 |
+
value=example_images,
|
| 163 |
+
label="Example Gallery",
|
| 164 |
+
show_label=True,
|
| 165 |
+
columns=4,
|
| 166 |
+
height=240,
|
| 167 |
+
allow_preview=True,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# When a thumbnail is clicked, load it into the image input
|
| 171 |
+
def _on_gallery_select(evt):
|
| 172 |
+
try:
|
| 173 |
+
idx = int(evt.index)
|
| 174 |
+
except Exception:
|
| 175 |
+
return None
|
| 176 |
+
if idx is None or idx < 0 or idx >= len(example_images):
|
| 177 |
+
return None
|
| 178 |
+
# Return PIL image so upstream expects a PIL image
|
| 179 |
+
try:
|
| 180 |
+
return Image.open(example_images[idx])
|
| 181 |
+
except Exception:
|
| 182 |
+
return example_images[idx]
|
| 183 |
+
|
| 184 |
+
gallery.select(fn=_on_gallery_select, inputs=None, outputs=image)
|
| 185 |
+
|
| 186 |
+
with gr.Column(scale=1):
|
| 187 |
+
prompt = gr.Textbox(
|
| 188 |
+
label="Prompt",
|
| 189 |
+
value=(
|
| 190 |
+
"As seen in the diagram, three darts are thrown at nine fixed balloons. "
|
| 191 |
+
"If a balloon is hit it will burst and the dart continues in the same direction "
|
| 192 |
+
"it had beforehand. How many balloons will not be hit by a dart?"
|
| 193 |
+
),
|
| 194 |
+
lines=4,
|
| 195 |
+
)
|
| 196 |
+
max_new_tokens = gr.Slider(16, 512, value=128, step=8, label="max_new_tokens")
|
| 197 |
+
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="temperature")
|
| 198 |
+
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="top_p")
|
| 199 |
+
top_k = gr.Slider(1, 200, value=50, step=1, label="top_k")
|
| 200 |
+
run = gr.Button("Generate")
|
| 201 |
+
|
| 202 |
+
output = gr.Textbox(label="Model Output", lines=8)
|
| 203 |
+
|
| 204 |
+
run.click(
|
| 205 |
+
fn=generate,
|
| 206 |
+
inputs=[image, prompt, max_new_tokens, temperature, top_p, top_k],
|
| 207 |
+
outputs=output,
|
| 208 |
+
show_progress=True,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
demo.queue(concurrency_count=1, max_size=10).launch()
|
| 212 |
+
return demo
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
if __name__ == "__main__":
|
| 216 |
+
build_ui()
|
examples/example_0.png
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.45.0
|
| 2 |
+
accelerate>=0.33.0
|
| 3 |
+
qwen-vl-utils>=0.0.8
|
| 4 |
+
gradio>=5.49.1
|
| 5 |
+
spaces>=0.24.0
|
| 6 |
+
pillow
|