| import argparse | |
| import inspect | |
| from . import gaussian_diffusion as gd | |
| from .respace import SpacedDiffusion, space_timesteps, SpacedDiffusionDDPM | |
| def create_gaussian_diffusion( | |
| *, | |
| normalize_input, | |
| schedule_name, | |
| sf=4, | |
| min_noise_level=0.01, | |
| steps=1000, | |
| kappa=1, | |
| etas_end=0.99, | |
| schedule_kwargs=None, | |
| weighted_mse=False, | |
| predict_type='xstart', | |
| timestep_respacing=None, | |
| scale_factor=None, | |
| latent_flag=True, | |
| ): | |
| sqrt_etas = gd.get_named_eta_schedule( | |
| schedule_name, | |
| num_diffusion_timesteps=steps, | |
| min_noise_level=min_noise_level, | |
| etas_end=etas_end, | |
| kappa=kappa, | |
| kwargs=schedule_kwargs, | |
| ) | |
| if timestep_respacing is None: | |
| timestep_respacing = steps | |
| else: | |
| assert isinstance(timestep_respacing, int) | |
| if predict_type == 'xstart': | |
| model_mean_type = gd.ModelMeanType.START_X | |
| elif predict_type == 'epsilon': | |
| model_mean_type = gd.ModelMeanType.EPSILON | |
| elif predict_type == 'epsilon_scale': | |
| model_mean_type = gd.ModelMeanType.EPSILON_SCALE | |
| elif predict_type == 'residual': | |
| model_mean_type = gd.ModelMeanType.RESIDUAL | |
| else: | |
| raise ValueError(f'Unknown Predicted type: {predict_type}') | |
| return SpacedDiffusion( | |
| use_timesteps=space_timesteps(steps, timestep_respacing), | |
| sqrt_etas=sqrt_etas, | |
| kappa=kappa, | |
| model_mean_type=model_mean_type, | |
| loss_type=gd.LossType.WEIGHTED_MSE if weighted_mse else gd.LossType.MSE, | |
| scale_factor=scale_factor, | |
| normalize_input=normalize_input, | |
| sf=sf, | |
| latent_flag=latent_flag, | |
| ) | |
| def create_gaussian_diffusion_ddpm( | |
| *, | |
| beta_start, | |
| beta_end, | |
| sf=4, | |
| steps=1000, | |
| learn_sigma=False, | |
| sigma_small=False, | |
| noise_schedule="linear", | |
| predict_xstart=False, | |
| timestep_respacing=None, | |
| scale_factor=1.0, | |
| ): | |
| betas = gd.get_named_beta_schedule(noise_schedule, steps, beta_start, beta_end) | |
| if timestep_respacing is None: | |
| timestep_respacing = steps | |
| else: | |
| assert isinstance(timestep_respacing, int) | |
| return SpacedDiffusionDDPM( | |
| use_timesteps=space_timesteps(steps, timestep_respacing), | |
| betas=betas, | |
| model_mean_type=( | |
| gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X | |
| ), | |
| model_var_type=( | |
| ( | |
| gd.ModelVarTypeDDPM.FIXED_LARGE | |
| if not sigma_small | |
| else gd.ModelVarTypeDDPM.FIXED_SMALL | |
| ) | |
| if not learn_sigma | |
| else gd.ModelVarTypeDDPM.LEARNED_RANGE | |
| ), | |
| scale_factor=scale_factor, | |
| sf=sf, | |
| ) | |