yuni0725
commited on
Commit
Β·
f80395f
1
Parent(s):
16b19c9
init3
Browse files- Dockerfile +7 -6
- main.py +9 -2
Dockerfile
CHANGED
|
@@ -3,16 +3,17 @@ FROM python:3.11-slim
|
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
ENV TRANSFORMERS_CACHE=/app/cache
|
|
|
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
| 10 |
|
| 11 |
-
COPY
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
RUN mkdir -p /app/cache
|
| 15 |
|
| 16 |
EXPOSE 7860
|
| 17 |
-
|
| 18 |
CMD ["python", "main.py"]
|
|
|
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
ENV TRANSFORMERS_CACHE=/app/cache
|
| 6 |
+
ENV HF_HOME=/app/hf_home
|
| 7 |
|
| 8 |
+
# μΊμ ν΄λ μμ± + κΆν λΆμ¬
|
| 9 |
+
RUN mkdir -p /app/cache && chmod -R 777 /app/cache
|
| 10 |
+
RUN mkdir -p /app/hf_home && chmod -R 777 /app/hf_home
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
+
COPY requirements.txt .
|
| 14 |
+
RUN pip install -r requirements.txt
|
| 15 |
|
| 16 |
+
COPY main.py .
|
|
|
|
| 17 |
|
| 18 |
EXPOSE 7860
|
|
|
|
| 19 |
CMD ["python", "main.py"]
|
main.py
CHANGED
|
@@ -4,6 +4,9 @@ import os
|
|
| 4 |
|
| 5 |
local_path = "./models/roberta-large"
|
| 6 |
|
|
|
|
|
|
|
|
|
|
| 7 |
model_id = "klue/roberta-large"
|
| 8 |
|
| 9 |
if os.path.exists(local_path):
|
|
@@ -12,14 +15,18 @@ if os.path.exists(local_path):
|
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(local_path)
|
| 13 |
else:
|
| 14 |
print("β¬οΈ λͺ¨λΈ νκΉ
νμ΄μ€μμ λ€μ΄λ‘λ μ€...")
|
| 15 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
os.makedirs(local_path, exist_ok=True)
|
| 18 |
model.save_pretrained(local_path)
|
| 19 |
tokenizer.save_pretrained(local_path)
|
| 20 |
|
| 21 |
app = Flask(__name__)
|
| 22 |
|
|
|
|
|
|
|
| 23 |
|
| 24 |
@app.route("/generate", methods=["POST"])
|
| 25 |
def generate():
|
|
|
|
| 4 |
|
| 5 |
local_path = "./models/roberta-large"
|
| 6 |
|
| 7 |
+
os.environ["HF_HOME"] = "/app/hf_home"
|
| 8 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/cache" # λ³ν μ¬μ© κ°λ₯
|
| 9 |
+
|
| 10 |
model_id = "klue/roberta-large"
|
| 11 |
|
| 12 |
if os.path.exists(local_path):
|
|
|
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(local_path)
|
| 16 |
else:
|
| 17 |
print("β¬οΈ λͺ¨λΈ νκΉ
νμ΄μ€μμ λ€μ΄λ‘λ μ€...")
|
| 18 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 19 |
+
model_id, cache_dir=os.environ["HF_HOME"]
|
| 20 |
+
)
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=os.environ["HF_HOME"])
|
| 22 |
os.makedirs(local_path, exist_ok=True)
|
| 23 |
model.save_pretrained(local_path)
|
| 24 |
tokenizer.save_pretrained(local_path)
|
| 25 |
|
| 26 |
app = Flask(__name__)
|
| 27 |
|
| 28 |
+
print("π λͺ¨λΈ λ‘λ μλ£")
|
| 29 |
+
|
| 30 |
|
| 31 |
@app.route("/generate", methods=["POST"])
|
| 32 |
def generate():
|