Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| model_name = 'yuntian-deng/gpt2-small-implicit-cot-multiplication' | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| def preprocess(num): | |
| num = num.strip().replace(' ', '') | |
| reversed_num = ' '.join(num[::-1]) | |
| return reversed_num | |
| def predict_product(num1, num2): | |
| input_text = f'{preprocess(num1)} * {preprocess(num2)} =' | |
| inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu') | |
| model.to('cuda' if torch.cuda.is_available() else 'cpu') | |
| outputs = model.generate(**inputs, max_new_tokens=40) | |
| prediction = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return prediction.strip() | |
| demo = gr.Interface( | |
| fn=predict_product, | |
| inputs=[gr.Number(label='First Number (up to 9 digits)'), gr.Number(label='Second Number (up to 9 digits)')], | |
| outputs='text', | |
| title='GPT-2 Multiplication Predictor', | |
| description='Enter two numbers up to 9 digits each and get the predicted product.' | |
| ) | |
| demo.launch() | |