Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import torch | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Load models | |
| implicit_cot_model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication' | |
| implicit_cot_model = AutoModelForCausalLM.from_pretrained(implicit_cot_model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(implicit_cot_model_name) | |
| no_cot_model_name = 'yuntian-deng/gpt2-no-cot-multiplication' | |
| no_cot_model = AutoModelForCausalLM.from_pretrained(no_cot_model_name) | |
| explicit_cot_model_name = 'yuntian-deng/gpt2-explicit-cot-multiplication' | |
| explicit_cot_model = AutoModelForCausalLM.from_pretrained(explicit_cot_model_name) | |
| models = {'implicit': implicit_cot_model, 'no': no_cot_model, 'explicit': explicit_cot_model} | |
| # Constants | |
| MAX_PRODUCT_DIGITS_PER_MODEL = {'implicit': 100, 'no': 100, 'explicit': 960} | |
| def preprocess(num): | |
| num = str(num).strip().replace(' ', '') | |
| reversed_num = ' '.join(num[::-1]) | |
| return reversed_num | |
| def postprocess(raw_output): | |
| prediction = raw_output.replace(' ', '')[::-1] | |
| return prediction | |
| def predict_product(num1, num2): | |
| input_text = f'{preprocess(num1)} * {preprocess(num2)} =' | |
| inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu') | |
| [model.to('cuda' if torch.cuda.is_available() else 'cpu') for model in models.values()] | |
| input_ids = inputs['input_ids'] | |
| input_len = input_ids.shape[-1] | |
| prediction = "" | |
| ground_truth_product = "" | |
| valid_input = True | |
| try: | |
| num1_int = int(num1) | |
| num2_int = int(num2) | |
| ground_truth_product = str(num1_int * num2_int) | |
| ground_truth_digits_reversed = list(ground_truth_product)[::-1] | |
| except ValueError: | |
| valid_input = False | |
| generated_ids_per_model = {model_name: inputs['input_ids'].data.clone() for model_name in models} | |
| finished_per_model = {model_name: False for model_name in models} | |
| past_key_values_per_model = {model_name: None for model_name in models} | |
| predicted_annotations_per_model = {} | |
| for step in range(max(MAX_PRODUCT_DIGITS_PER_MODEL.values())): # Set a maximum limit to prevent infinite loops | |
| # Ground Truth | |
| ground_truth_annotations = [(ground_truth_digit, None) for ground_truth_digit in ground_truth_digits_reversed[:step+1]] | |
| ground_truth_annotations = ground_truth_annotations[::-1] | |
| # Predicted | |
| for model_name in models: | |
| import time | |
| if not finished_per_model['implicit']: | |
| time.sleep(0.034) | |
| else: | |
| time.sleep(0.01) | |
| model = models[model_name] | |
| if finished_per_model[model_name]: | |
| continue | |
| if step >= MAX_PRODUCT_DIGITS_PER_MODEL[model_name]: | |
| continue | |
| generation_kwargs = { | |
| 'input_ids': generated_ids_per_model[model_name], | |
| 'max_new_tokens': 1, | |
| 'do_sample': False, | |
| 'past_key_values': past_key_values_per_model[model_name], | |
| 'return_dict_in_generate': True, | |
| 'use_cache': True | |
| } | |
| if step == 0: | |
| del generation_kwargs['past_key_values'] | |
| outputs = model.generate(**generation_kwargs) | |
| generated_ids = outputs.sequences | |
| next_token_id = generated_ids[0, -1] | |
| #print (next_token_id) | |
| if next_token_id.item() == tokenizer.eos_token_id: | |
| finished_per_model[model_name] = True | |
| continue | |
| generated_ids_per_model[model_name] = generated_ids | |
| past_key_values_per_model[model_name] = outputs.past_key_values | |
| output_text = tokenizer.decode(generated_ids[0, input_len:], skip_special_tokens=True) | |
| predicted_digits_reversed = output_text.strip().split(' ') | |
| predicted_annotations = [] | |
| is_correct_sofar = True | |
| if model_name == 'explicit': | |
| if '=' not in predicted_digits_reversed: | |
| predicted_annotations = [(predicted_digit, None) for predicted_digit in predicted_digits_reversed] | |
| predicted_digits_reversed = [] | |
| else: | |
| equal_sign_position = predicted_digits_reversed.index('=') | |
| predicted_annotations = [(predicted_digit, None) for predicted_digit in predicted_digits_reversed[:equal_sign_position+1]] | |
| predicted_digits_reversed = predicted_digits_reversed[equal_sign_position+1:] | |
| for i in range(len(predicted_digits_reversed)): | |
| predicted_digit = predicted_digits_reversed[i] | |
| if i >= len(ground_truth_digits_reversed): | |
| if predicted_digit == '0' and is_correct_sofar: | |
| is_correct_digit = True | |
| else: | |
| is_correct_digit = False | |
| else: | |
| ground_truth_digit = ground_truth_digits_reversed[i] | |
| if predicted_digit == ground_truth_digit: | |
| is_correct_digit = True | |
| else: | |
| is_correct_digit = False | |
| if not is_correct_digit: | |
| is_correct_sofar = False | |
| if is_correct_digit: | |
| predicted_annotations.append((predicted_digit, "correct")) | |
| else: | |
| predicted_annotations.append((predicted_digit, "wrong")) | |
| predicted_annotations = predicted_annotations[::-1] | |
| predicted_annotations_per_model[model_name] = predicted_annotations | |
| predicted_annotations_implicit_cot = predicted_annotations_per_model['implicit'] | |
| predicted_annotations_nocot = predicted_annotations_per_model['no'] | |
| predicted_annotations_explicit_cot = predicted_annotations_per_model['explicit'] | |
| yield ground_truth_annotations, predicted_annotations_implicit_cot, predicted_annotations_nocot, predicted_annotations_explicit_cot | |
| color_map = {"correct": "green", "wrong": "red"} | |
| demo = gr.Interface( | |
| fn=predict_product, | |
| inputs=[ | |
| gr.Textbox(label='First Number (up to 15 digits)', value='123456789'), | |
| gr.Textbox(label='Second Number (up to 15 digits)', value='987654321'), | |
| ], | |
| outputs=[ | |
| gr.HighlightedText(label='Ground Truth Product', combine_adjacent=False, show_legend=False, color_map=color_map), | |
| gr.HighlightedText(label='Implicit CoT Prediction (Ours)', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False), | |
| gr.HighlightedText(label='No CoT Prediction', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False), | |
| gr.HighlightedText(label='Explicit CoT Steps & Prediction', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False), | |
| ], | |
| clear_btn=None, | |
| submit_btn="Multiply!", | |
| live=False, | |
| concurrency_limit=1 | |
| ) | |
| demo.queue(max_size=20).launch() | |