Spaces:
Running
on
Zero
Running
on
Zero
da03
commited on
Commit
·
39a2dae
1
Parent(s):
b2ef87d
app.py
CHANGED
|
@@ -18,21 +18,26 @@ def postprocess(raw_output):
|
|
| 18 |
|
| 19 |
@spaces.GPU
|
| 20 |
def predict_product(num1, num2):
|
|
|
|
| 21 |
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
|
|
|
|
| 22 |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 23 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
| 24 |
outputs = model.generate(**inputs, max_new_tokens=40)
|
|
|
|
| 25 |
output = outputs[0][inputs['input_ids'].shape[-1]:]
|
| 26 |
raw_output = tokenizer.decode(output, skip_special_tokens=True)
|
| 27 |
prediction = postprocess(raw_output)
|
| 28 |
|
|
|
|
| 29 |
try:
|
| 30 |
num1_int = int(num1)
|
| 31 |
num2_int = int(num2)
|
| 32 |
valid_input = True
|
| 33 |
except ValueError:
|
| 34 |
valid_input = False
|
| 35 |
-
|
| 36 |
if valid_input:
|
| 37 |
correct_product = str(num1_int * num2_int)
|
| 38 |
is_correct = (prediction == correct_product)
|
|
|
|
| 18 |
|
| 19 |
@spaces.GPU
|
| 20 |
def predict_product(num1, num2):
|
| 21 |
+
# Reverse input digits and add spaces
|
| 22 |
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
|
| 23 |
+
|
| 24 |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 25 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 26 |
+
|
| 27 |
+
# Generate output
|
| 28 |
outputs = model.generate(**inputs, max_new_tokens=40)
|
| 29 |
+
|
| 30 |
output = outputs[0][inputs['input_ids'].shape[-1]:]
|
| 31 |
raw_output = tokenizer.decode(output, skip_special_tokens=True)
|
| 32 |
prediction = postprocess(raw_output)
|
| 33 |
|
| 34 |
+
# Evalaute the correctness of the result
|
| 35 |
try:
|
| 36 |
num1_int = int(num1)
|
| 37 |
num2_int = int(num2)
|
| 38 |
valid_input = True
|
| 39 |
except ValueError:
|
| 40 |
valid_input = False
|
|
|
|
| 41 |
if valid_input:
|
| 42 |
correct_product = str(num1_int * num2_int)
|
| 43 |
is_correct = (prediction == correct_product)
|