Spaces:
Running
on
Zero
Running
on
Zero
da03
commited on
Commit
·
eaa0586
1
Parent(s):
521b575
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import spaces
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 5 |
|
| 6 |
model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
@@ -18,41 +19,43 @@ def postprocess(raw_output):
|
|
| 18 |
|
| 19 |
@spaces.GPU
|
| 20 |
def predict_product(num1, num2):
|
| 21 |
-
# Reverse input digits and add spaces
|
| 22 |
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
|
| 23 |
-
|
| 24 |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 25 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
raw_output = tokenizer.decode(output, skip_special_tokens=True)
|
| 32 |
-
prediction = postprocess(raw_output)
|
| 33 |
|
| 34 |
-
# Evaluate the correctness of the result
|
| 35 |
try:
|
| 36 |
num1_int = int(num1)
|
| 37 |
num2_int = int(num2)
|
| 38 |
-
|
| 39 |
except ValueError:
|
| 40 |
valid_input = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
if valid_input:
|
| 42 |
-
|
| 43 |
-
try:
|
| 44 |
-
prediction_int = int(prediction)
|
| 45 |
-
is_correct = (prediction_int == correct_product)
|
| 46 |
-
except ValueError:
|
| 47 |
-
is_correct = False
|
| 48 |
-
result_color = "green" if is_correct else "red"
|
| 49 |
result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}."
|
| 50 |
else:
|
| 51 |
-
result_color = "black"
|
| 52 |
result_message = "Invalid input. Could not evaluate correctness."
|
| 53 |
-
result_html = f"<div style='color: {result_color};'>{result_message}</div>"
|
| 54 |
|
| 55 |
-
|
| 56 |
|
| 57 |
demo = gr.Interface(
|
| 58 |
fn=predict_product,
|
|
@@ -61,7 +64,7 @@ demo = gr.Interface(
|
|
| 61 |
gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
|
| 62 |
],
|
| 63 |
outputs=[
|
| 64 |
-
gr.
|
| 65 |
gr.HTML(label='Result Message')
|
| 66 |
],
|
| 67 |
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
|
|
@@ -73,7 +76,7 @@ demo = gr.Interface(
|
|
| 73 |
""",
|
| 74 |
clear_btn=None,
|
| 75 |
submit_btn="Multiply!",
|
| 76 |
-
live=
|
| 77 |
)
|
| 78 |
|
| 79 |
demo.launch()
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import time
|
| 6 |
|
| 7 |
model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 19 |
|
| 20 |
@spaces.GPU
|
| 21 |
def predict_product(num1, num2):
|
|
|
|
| 22 |
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
|
|
|
|
| 23 |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 24 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 25 |
|
| 26 |
+
generated_ids = inputs['input_ids']
|
| 27 |
+
prediction = ""
|
| 28 |
+
correct_product = ""
|
| 29 |
+
valid_input = True
|
|
|
|
|
|
|
| 30 |
|
|
|
|
| 31 |
try:
|
| 32 |
num1_int = int(num1)
|
| 33 |
num2_int = int(num2)
|
| 34 |
+
correct_product = str(num1_int * num2_int)
|
| 35 |
except ValueError:
|
| 36 |
valid_input = False
|
| 37 |
+
|
| 38 |
+
for _ in range(40): # Adjust the range to control the maximum number of generated tokens
|
| 39 |
+
outputs = model.generate(generated_ids, max_new_tokens=1, do_sample=False)
|
| 40 |
+
generated_ids = torch.cat((generated_ids, outputs[:, -1:]), dim=-1)
|
| 41 |
+
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
| 42 |
+
prediction = postprocess(output_text)
|
| 43 |
+
|
| 44 |
+
result_html = "<div style='margin-bottom: 10px;'>Correct Result: " + " ".join(correct_product) + "</div><div>"
|
| 45 |
+
for i, pred_digit in enumerate(prediction):
|
| 46 |
+
color = "green" if i < len(correct_product) and pred_digit == correct_product[i] else "red"
|
| 47 |
+
result_html += f"<span style='color: {color};'>{pred_digit}</span>"
|
| 48 |
+
result_html += "</div>"
|
| 49 |
+
|
| 50 |
+
yield result_html, ""
|
| 51 |
+
|
| 52 |
if valid_input:
|
| 53 |
+
is_correct = prediction == correct_product
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}."
|
| 55 |
else:
|
|
|
|
| 56 |
result_message = "Invalid input. Could not evaluate correctness."
|
|
|
|
| 57 |
|
| 58 |
+
yield result_html, result_message
|
| 59 |
|
| 60 |
demo = gr.Interface(
|
| 61 |
fn=predict_product,
|
|
|
|
| 64 |
gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
|
| 65 |
],
|
| 66 |
outputs=[
|
| 67 |
+
gr.HTML(label='Predicted Product with Matching Digits Highlighted'),
|
| 68 |
gr.HTML(label='Result Message')
|
| 69 |
],
|
| 70 |
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
|
|
|
|
| 76 |
""",
|
| 77 |
clear_btn=None,
|
| 78 |
submit_btn="Multiply!",
|
| 79 |
+
live=True
|
| 80 |
)
|
| 81 |
|
| 82 |
demo.launch()
|