Spaces:
Runtime error
Runtime error
fix one typo of file name
Browse files- utils/tools_gradio.py +193 -0
utils/tools_gradio.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def fast_process(
|
| 9 |
+
annotations,
|
| 10 |
+
image,
|
| 11 |
+
device,
|
| 12 |
+
scale,
|
| 13 |
+
better_quality=False,
|
| 14 |
+
mask_random_color=True,
|
| 15 |
+
bbox=None,
|
| 16 |
+
points=None,
|
| 17 |
+
use_retina=True,
|
| 18 |
+
withContours=True,
|
| 19 |
+
):
|
| 20 |
+
if isinstance(annotations[0], dict):
|
| 21 |
+
annotations = [annotation["segmentation"] for annotation in annotations]
|
| 22 |
+
|
| 23 |
+
original_h = image.height
|
| 24 |
+
original_w = image.width
|
| 25 |
+
if better_quality:
|
| 26 |
+
if isinstance(annotations[0], torch.Tensor):
|
| 27 |
+
annotations = np.array(annotations.cpu())
|
| 28 |
+
for i, mask in enumerate(annotations):
|
| 29 |
+
mask = cv2.morphologyEx(
|
| 30 |
+
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
|
| 31 |
+
)
|
| 32 |
+
annotations[i] = cv2.morphologyEx(
|
| 33 |
+
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
|
| 34 |
+
)
|
| 35 |
+
if device == "cpu":
|
| 36 |
+
annotations = np.array(annotations)
|
| 37 |
+
inner_mask = fast_show_mask(
|
| 38 |
+
annotations,
|
| 39 |
+
plt.gca(),
|
| 40 |
+
random_color=mask_random_color,
|
| 41 |
+
bbox=bbox,
|
| 42 |
+
retinamask=use_retina,
|
| 43 |
+
target_height=original_h,
|
| 44 |
+
target_width=original_w,
|
| 45 |
+
)
|
| 46 |
+
else:
|
| 47 |
+
if isinstance(annotations[0], np.ndarray):
|
| 48 |
+
annotations = np.array(annotations)
|
| 49 |
+
annotations = torch.from_numpy(annotations)
|
| 50 |
+
inner_mask = fast_show_mask_gpu(
|
| 51 |
+
annotations,
|
| 52 |
+
plt.gca(),
|
| 53 |
+
random_color=mask_random_color,
|
| 54 |
+
bbox=bbox,
|
| 55 |
+
retinamask=use_retina,
|
| 56 |
+
target_height=original_h,
|
| 57 |
+
target_width=original_w,
|
| 58 |
+
)
|
| 59 |
+
if isinstance(annotations, torch.Tensor):
|
| 60 |
+
annotations = annotations.cpu().numpy()
|
| 61 |
+
|
| 62 |
+
if withContours:
|
| 63 |
+
contour_all = []
|
| 64 |
+
temp = np.zeros((original_h, original_w, 1))
|
| 65 |
+
for i, mask in enumerate(annotations):
|
| 66 |
+
if type(mask) == dict:
|
| 67 |
+
mask = mask["segmentation"]
|
| 68 |
+
annotation = mask.astype(np.uint8)
|
| 69 |
+
if use_retina == False:
|
| 70 |
+
annotation = cv2.resize(
|
| 71 |
+
annotation,
|
| 72 |
+
(original_w, original_h),
|
| 73 |
+
interpolation=cv2.INTER_NEAREST,
|
| 74 |
+
)
|
| 75 |
+
contours, _ = cv2.findContours(
|
| 76 |
+
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
| 77 |
+
)
|
| 78 |
+
for contour in contours:
|
| 79 |
+
contour_all.append(contour)
|
| 80 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
| 81 |
+
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
| 82 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
| 83 |
+
|
| 84 |
+
image = image.convert("RGBA")
|
| 85 |
+
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), "RGBA")
|
| 86 |
+
image.paste(overlay_inner, (0, 0), overlay_inner)
|
| 87 |
+
|
| 88 |
+
if withContours:
|
| 89 |
+
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), "RGBA")
|
| 90 |
+
image.paste(overlay_contour, (0, 0), overlay_contour)
|
| 91 |
+
|
| 92 |
+
return image
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# CPU post process
|
| 96 |
+
def fast_show_mask(
|
| 97 |
+
annotation,
|
| 98 |
+
ax,
|
| 99 |
+
random_color=False,
|
| 100 |
+
bbox=None,
|
| 101 |
+
retinamask=True,
|
| 102 |
+
target_height=960,
|
| 103 |
+
target_width=960,
|
| 104 |
+
):
|
| 105 |
+
mask_sum = annotation.shape[0]
|
| 106 |
+
height = annotation.shape[1]
|
| 107 |
+
weight = annotation.shape[2]
|
| 108 |
+
# annotation is sorted by area
|
| 109 |
+
areas = np.sum(annotation, axis=(1, 2))
|
| 110 |
+
sorted_indices = np.argsort(areas)[::1]
|
| 111 |
+
annotation = annotation[sorted_indices]
|
| 112 |
+
|
| 113 |
+
index = (annotation != 0).argmax(axis=0)
|
| 114 |
+
if random_color == True:
|
| 115 |
+
color = np.random.random((mask_sum, 1, 1, 3))
|
| 116 |
+
else:
|
| 117 |
+
color = np.ones((mask_sum, 1, 1, 3)) * np.array(
|
| 118 |
+
[30 / 255, 144 / 255, 255 / 255]
|
| 119 |
+
)
|
| 120 |
+
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
|
| 121 |
+
visual = np.concatenate([color, transparency], axis=-1)
|
| 122 |
+
mask_image = np.expand_dims(annotation, -1) * visual
|
| 123 |
+
|
| 124 |
+
mask = np.zeros((height, weight, 4))
|
| 125 |
+
|
| 126 |
+
h_indices, w_indices = np.meshgrid(
|
| 127 |
+
np.arange(height), np.arange(weight), indexing="ij"
|
| 128 |
+
)
|
| 129 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
| 130 |
+
|
| 131 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
| 132 |
+
if bbox is not None:
|
| 133 |
+
x1, y1, x2, y2 = bbox
|
| 134 |
+
ax.add_patch(
|
| 135 |
+
plt.Rectangle(
|
| 136 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 137 |
+
)
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
if retinamask == False:
|
| 141 |
+
mask = cv2.resize(
|
| 142 |
+
mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
return mask
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def fast_show_mask_gpu(
|
| 149 |
+
annotation,
|
| 150 |
+
ax,
|
| 151 |
+
random_color=False,
|
| 152 |
+
bbox=None,
|
| 153 |
+
retinamask=True,
|
| 154 |
+
target_height=960,
|
| 155 |
+
target_width=960,
|
| 156 |
+
):
|
| 157 |
+
device = annotation.device
|
| 158 |
+
mask_sum = annotation.shape[0]
|
| 159 |
+
height = annotation.shape[1]
|
| 160 |
+
weight = annotation.shape[2]
|
| 161 |
+
areas = torch.sum(annotation, dim=(1, 2))
|
| 162 |
+
sorted_indices = torch.argsort(areas, descending=False)
|
| 163 |
+
annotation = annotation[sorted_indices]
|
| 164 |
+
# find the first non-zero subscript for each position
|
| 165 |
+
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
| 166 |
+
if random_color == True:
|
| 167 |
+
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
| 168 |
+
else:
|
| 169 |
+
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
| 170 |
+
[30 / 255, 144 / 255, 255 / 255]
|
| 171 |
+
).to(device)
|
| 172 |
+
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
|
| 173 |
+
visual = torch.cat([color, transparency], dim=-1)
|
| 174 |
+
mask_image = torch.unsqueeze(annotation, -1) * visual
|
| 175 |
+
# index
|
| 176 |
+
mask = torch.zeros((height, weight, 4)).to(device)
|
| 177 |
+
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
| 178 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
| 179 |
+
# make updates based on indices
|
| 180 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
| 181 |
+
mask_cpu = mask.cpu().numpy()
|
| 182 |
+
if bbox is not None:
|
| 183 |
+
x1, y1, x2, y2 = bbox
|
| 184 |
+
ax.add_patch(
|
| 185 |
+
plt.Rectangle(
|
| 186 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
+
if retinamask == False:
|
| 190 |
+
mask_cpu = cv2.resize(
|
| 191 |
+
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
| 192 |
+
)
|
| 193 |
+
return mask_cpu
|