Spaces:
Runtime error
Runtime error
demo file with dependency
Browse files- app.py +78 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torchvision.transforms import ToTensor
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
# loading EfficientSAM model
|
| 8 |
+
model_path = "efficientsam_s_cpu.jit"
|
| 9 |
+
with open(model_path, "rb") as f:
|
| 10 |
+
model = torch.jit.load(f)
|
| 11 |
+
|
| 12 |
+
# getting mask using points
|
| 13 |
+
def get_sam_mask_using_points(img_tensor, pts_sampled, model):
|
| 14 |
+
pts_sampled = torch.reshape(torch.tensor(pts_sampled), [1, 1, -1, 2])
|
| 15 |
+
max_num_pts = pts_sampled.shape[2]
|
| 16 |
+
pts_labels = torch.ones(1, 1, max_num_pts)
|
| 17 |
+
|
| 18 |
+
predicted_logits, predicted_iou = model(
|
| 19 |
+
img_tensor[None, ...],
|
| 20 |
+
pts_sampled,
|
| 21 |
+
pts_labels,
|
| 22 |
+
)
|
| 23 |
+
predicted_logits = predicted_logits.cpu()
|
| 24 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
| 25 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 26 |
+
|
| 27 |
+
max_predicted_iou = -1
|
| 28 |
+
selected_mask_using_predicted_iou = None
|
| 29 |
+
for m in range(all_masks.shape[0]):
|
| 30 |
+
curr_predicted_iou = predicted_iou[m]
|
| 31 |
+
if (
|
| 32 |
+
curr_predicted_iou > max_predicted_iou
|
| 33 |
+
or selected_mask_using_predicted_iou is None
|
| 34 |
+
):
|
| 35 |
+
max_predicted_iou = curr_predicted_iou
|
| 36 |
+
selected_mask_using_predicted_iou = all_masks[m]
|
| 37 |
+
return selected_mask_using_predicted_iou
|
| 38 |
+
|
| 39 |
+
# examples
|
| 40 |
+
examples = [["examples/image1.jpg"], ["examples/image2.jpg"], ["examples/image3.jpg"], ["examples/image4.jpg"],
|
| 41 |
+
["examples/image5.jpg"], ["examples/image6.jpg"], ["examples/image7.jpg"], ["examples/image8.jpg"],
|
| 42 |
+
["examples/image9.jpg"], ["examples/image10.jpg"], ["examples/image11.jpg"], ["examples/image12.jpg"]
|
| 43 |
+
["examples/image13.jpg"], ["examples/image14.jpg"]]
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
with gr.Blocks() as demo:
|
| 47 |
+
with gr.Row():
|
| 48 |
+
input_img = gr.Image(label="Input",height=512)
|
| 49 |
+
output_img = gr.Image(label="Selected Segment",height=512)
|
| 50 |
+
|
| 51 |
+
with gr.Row():
|
| 52 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
| 53 |
+
gr.Examples(examples=examples,
|
| 54 |
+
inputs=[input_img])
|
| 55 |
+
|
| 56 |
+
def get_select_coords(img, evt: gr.SelectData):
|
| 57 |
+
img_tensor = ToTensor()(img)
|
| 58 |
+
_, H, W = img_tensor.shape
|
| 59 |
+
|
| 60 |
+
visited_pixels = set()
|
| 61 |
+
pixels_in_queue = set()
|
| 62 |
+
pixels_in_segment = set()
|
| 63 |
+
|
| 64 |
+
mask = get_sam_mask_using_points(img_tensor, [[evt.index[0], evt.index[1]]], model)
|
| 65 |
+
|
| 66 |
+
out = img.copy()
|
| 67 |
+
|
| 68 |
+
out = out.astype(np.uint8)
|
| 69 |
+
out *= mask[:,:,None]
|
| 70 |
+
for pixel in pixels_in_segment:
|
| 71 |
+
out[pixel[0], pixel[1]] = img[pixel[0], pixel[1]]
|
| 72 |
+
print(out)
|
| 73 |
+
return out
|
| 74 |
+
|
| 75 |
+
input_img.select(get_select_coords, [input_img], output_img)
|
| 76 |
+
|
| 77 |
+
if __name__ == "__main__":
|
| 78 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.0.1
|
| 2 |
+
torchvision==0.15.2
|
| 3 |
+
gradio
|
| 4 |
+
transformers==4.32.0
|
| 5 |
+
opencv-python
|
| 6 |
+
pandas==2.0.3
|
| 7 |
+
matplotlib==3.7.2
|