Spaces:
Runtime error
Runtime error
make some updates
Browse files
app.py
CHANGED
|
@@ -1,78 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
|
|
|
| 4 |
from torchvision.transforms import ToTensor
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# examples
|
| 40 |
-
examples = [
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
with gr.Row():
|
| 52 |
-
gr.
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
for pixel in pixels_in_segment:
|
| 71 |
-
out[pixel[0], pixel[1]] = img[pixel[0], pixel[1]]
|
| 72 |
-
print(out)
|
| 73 |
-
return out
|
| 74 |
|
| 75 |
-
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import os # noqa
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
| 7 |
+
from PIL import ImageDraw
|
| 8 |
from torchvision.transforms import ToTensor
|
| 9 |
+
|
| 10 |
+
from utils.tools import format_results, point_prompt
|
| 11 |
+
from utils.tools_gradio import fast_process
|
| 12 |
+
|
| 13 |
+
# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Thanks for AN-619.
|
| 14 |
+
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
+
gpu_checkpoint_path = "efficientsam_s_gpu.jit"
|
| 18 |
+
cpu_checkpoint_path = "efficientsam_s_cpu.jit"
|
| 19 |
+
|
| 20 |
+
if torch.cuda.is_available():
|
| 21 |
+
model = torch.jit.load(gpu_checkpoint_path)
|
| 22 |
+
else:
|
| 23 |
+
model = torch.jit.load(cpu_checkpoint_path)
|
| 24 |
+
model.eval()
|
| 25 |
+
|
| 26 |
+
# Description
|
| 27 |
+
title = "<center><strong><font size='8'>Efficient Segment Anything(EfficientSAM)<font></strong></center>"
|
| 28 |
+
|
| 29 |
+
description_e = """This is a demo of [Efficient Segment Anything(EfficientSAM) Model](https://github.com/yformer/EfficientSAM).
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
description_p = """# Interactive Instance Segmentation
|
| 33 |
+
- Point-prompt instruction
|
| 34 |
+
<ol>
|
| 35 |
+
<li> Click on the left image (point input), visualizing the point on the right image </li>
|
| 36 |
+
<li> Click the button of Segment with Point Prompt </li>
|
| 37 |
+
</ol>
|
| 38 |
+
- Box-prompt instruction
|
| 39 |
+
<ol>
|
| 40 |
+
<li> Click on the left image (one point input), visualizing the point on the right image </li>
|
| 41 |
+
<li> Click on the left image (another point input), visualizing the point and the box on the right image</li>
|
| 42 |
+
<li> Click the button of Segment with Box Prompt </li>
|
| 43 |
+
</ol>
|
| 44 |
+
- Github [link](https://github.com/yformer/EfficientSAM)
|
| 45 |
+
"""
|
| 46 |
|
| 47 |
# examples
|
| 48 |
+
examples = [
|
| 49 |
+
["examples/image1.jpg"],
|
| 50 |
+
["examples/image2.jpg"],
|
| 51 |
+
["examples/image3.jpg"],
|
| 52 |
+
["examples/image4.jpg"],
|
| 53 |
+
["examples/image5.jpg"],
|
| 54 |
+
["examples/image6.jpg"],
|
| 55 |
+
["examples/image7.jpg"],
|
| 56 |
+
["examples/image8.jpg"],
|
| 57 |
+
["examples/image9.jpg"],
|
| 58 |
+
["examples/image10.jpg"],
|
| 59 |
+
["examples/image11.jpg"],
|
| 60 |
+
["examples/image12.jpg"],
|
| 61 |
+
["examples/image13.jpg"],
|
| 62 |
+
["examples/image14.jpg"],
|
| 63 |
+
]
|
| 64 |
|
| 65 |
+
default_example = examples[0]
|
| 66 |
|
| 67 |
+
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def segment_with_boxs(
|
| 71 |
+
image,
|
| 72 |
+
seg_image,
|
| 73 |
+
input_size=1024,
|
| 74 |
+
better_quality=False,
|
| 75 |
+
withContours=True,
|
| 76 |
+
use_retina=True,
|
| 77 |
+
mask_random_color=True,
|
| 78 |
+
):
|
| 79 |
+
try:
|
| 80 |
+
global global_points
|
| 81 |
+
global global_point_label
|
| 82 |
+
if len(global_points) < 2:
|
| 83 |
+
return seg_image
|
| 84 |
+
print("Original Image : ", image.size)
|
| 85 |
+
|
| 86 |
+
input_size = int(input_size)
|
| 87 |
+
w, h = image.size
|
| 88 |
+
scale = input_size / max(w, h)
|
| 89 |
+
new_w = int(w * scale)
|
| 90 |
+
new_h = int(h * scale)
|
| 91 |
+
image = image.resize((new_w, new_h))
|
| 92 |
+
|
| 93 |
+
print("Scaled Image : ", image.size)
|
| 94 |
+
print("Scale : ", scale)
|
| 95 |
+
|
| 96 |
+
scaled_points = np.array(
|
| 97 |
+
[[int(x * scale) for x in point] for point in global_points]
|
| 98 |
+
)
|
| 99 |
+
scaled_points = scaled_points[:2]
|
| 100 |
+
scaled_point_label = np.array(global_point_label)[:2]
|
| 101 |
+
|
| 102 |
+
print(scaled_points, scaled_points is not None)
|
| 103 |
+
print(scaled_point_label, scaled_point_label is not None)
|
| 104 |
+
|
| 105 |
+
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
| 106 |
+
print("No points selected")
|
| 107 |
+
return image
|
| 108 |
+
|
| 109 |
+
nd_image = np.array(image)
|
| 110 |
+
img_tensor = ToTensor()(nd_image)
|
| 111 |
+
|
| 112 |
+
print(img_tensor.shape)
|
| 113 |
+
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
|
| 114 |
+
pts_sampled = pts_sampled[:, :, :2, :]
|
| 115 |
+
pts_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
|
| 116 |
+
|
| 117 |
+
predicted_logits, predicted_iou = model(
|
| 118 |
+
img_tensor[None, ...].to(device),
|
| 119 |
+
pts_sampled.to(device),
|
| 120 |
+
pts_labels.to(device),
|
| 121 |
+
)
|
| 122 |
+
predicted_logits = predicted_logits.cpu()
|
| 123 |
+
all_masks = torch.ge(
|
| 124 |
+
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
|
| 125 |
+
).numpy()
|
| 126 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 127 |
+
|
| 128 |
+
max_predicted_iou = -1
|
| 129 |
+
selected_mask_using_predicted_iou = None
|
| 130 |
+
selected_predicted_iou = None
|
| 131 |
+
|
| 132 |
+
for m in range(all_masks.shape[0]):
|
| 133 |
+
curr_predicted_iou = predicted_iou[m]
|
| 134 |
+
if (
|
| 135 |
+
curr_predicted_iou > max_predicted_iou
|
| 136 |
+
or selected_mask_using_predicted_iou is None
|
| 137 |
+
):
|
| 138 |
+
max_predicted_iou = curr_predicted_iou
|
| 139 |
+
selected_mask_using_predicted_iou = all_masks[m : m + 1]
|
| 140 |
+
selected_predicted_iou = predicted_iou[m : m + 1]
|
| 141 |
+
|
| 142 |
+
results = format_results(
|
| 143 |
+
selected_mask_using_predicted_iou,
|
| 144 |
+
selected_predicted_iou,
|
| 145 |
+
predicted_logits,
|
| 146 |
+
0,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
annotations = results[0]["segmentation"]
|
| 150 |
+
annotations = np.array([annotations])
|
| 151 |
+
print(scaled_points.shape)
|
| 152 |
+
fig = fast_process(
|
| 153 |
+
annotations=annotations,
|
| 154 |
+
image=image,
|
| 155 |
+
device=device,
|
| 156 |
+
scale=(1024 // input_size),
|
| 157 |
+
better_quality=better_quality,
|
| 158 |
+
mask_random_color=mask_random_color,
|
| 159 |
+
use_retina=use_retina,
|
| 160 |
+
bbox=scaled_points.reshape([4]),
|
| 161 |
+
withContours=withContours,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
global_points = []
|
| 165 |
+
global_point_label = []
|
| 166 |
+
# return fig, None
|
| 167 |
+
return fig
|
| 168 |
+
except:
|
| 169 |
+
return image
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def segment_with_points(
|
| 173 |
+
image,
|
| 174 |
+
input_size=1024,
|
| 175 |
+
better_quality=False,
|
| 176 |
+
withContours=True,
|
| 177 |
+
use_retina=True,
|
| 178 |
+
mask_random_color=True,
|
| 179 |
+
):
|
| 180 |
+
try:
|
| 181 |
+
global global_points
|
| 182 |
+
global global_point_label
|
| 183 |
+
|
| 184 |
+
print("Original Image : ", image.size)
|
| 185 |
+
|
| 186 |
+
input_size = int(input_size)
|
| 187 |
+
w, h = image.size
|
| 188 |
+
scale = input_size / max(w, h)
|
| 189 |
+
new_w = int(w * scale)
|
| 190 |
+
new_h = int(h * scale)
|
| 191 |
+
image = image.resize((new_w, new_h))
|
| 192 |
+
|
| 193 |
+
print("Scaled Image : ", image.size)
|
| 194 |
+
print("Scale : ", scale)
|
| 195 |
+
|
| 196 |
+
if global_points is None:
|
| 197 |
+
return image
|
| 198 |
+
if len(global_points) < 1:
|
| 199 |
+
return image
|
| 200 |
+
scaled_points = np.array(
|
| 201 |
+
[[int(x * scale) for x in point] for point in global_points]
|
| 202 |
+
)
|
| 203 |
+
scaled_point_label = np.array(global_point_label)
|
| 204 |
+
|
| 205 |
+
print(scaled_points, scaled_points is not None)
|
| 206 |
+
print(scaled_point_label, scaled_point_label is not None)
|
| 207 |
+
|
| 208 |
+
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
| 209 |
+
print("No points selected")
|
| 210 |
+
return image
|
| 211 |
+
|
| 212 |
+
nd_image = np.array(image)
|
| 213 |
+
img_tensor = ToTensor()(nd_image)
|
| 214 |
+
|
| 215 |
+
print(img_tensor.shape)
|
| 216 |
+
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
|
| 217 |
+
pts_labels = torch.reshape(torch.tensor(global_point_label), [1, 1, -1])
|
| 218 |
+
|
| 219 |
+
predicted_logits, predicted_iou = model(
|
| 220 |
+
img_tensor[None, ...].to(device),
|
| 221 |
+
pts_sampled.to(device),
|
| 222 |
+
pts_labels.to(device),
|
| 223 |
+
)
|
| 224 |
+
predicted_logits = predicted_logits.cpu()
|
| 225 |
+
all_masks = torch.ge(
|
| 226 |
+
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
|
| 227 |
+
).numpy()
|
| 228 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 229 |
+
|
| 230 |
+
results = format_results(all_masks, predicted_iou, predicted_logits, 0)
|
| 231 |
|
| 232 |
+
annotations, _ = point_prompt(
|
| 233 |
+
results, scaled_points, scaled_point_label, new_h, new_w
|
| 234 |
+
)
|
| 235 |
+
annotations = np.array([annotations])
|
| 236 |
+
|
| 237 |
+
fig = fast_process(
|
| 238 |
+
annotations=annotations,
|
| 239 |
+
image=image,
|
| 240 |
+
device=device,
|
| 241 |
+
scale=(1024 // input_size),
|
| 242 |
+
better_quality=better_quality,
|
| 243 |
+
mask_random_color=mask_random_color,
|
| 244 |
+
points=scaled_points,
|
| 245 |
+
bbox=None,
|
| 246 |
+
use_retina=use_retina,
|
| 247 |
+
withContours=withContours,
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
global_points = []
|
| 251 |
+
global_point_label = []
|
| 252 |
+
# return fig, None
|
| 253 |
+
return fig
|
| 254 |
+
except:
|
| 255 |
+
return image
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def get_points_with_draw(image, cond_image, evt: gr.SelectData):
|
| 259 |
+
global global_points
|
| 260 |
+
global global_point_label
|
| 261 |
+
if len(global_points) == 0:
|
| 262 |
+
image = copy.deepcopy(cond_image)
|
| 263 |
+
x, y = evt.index[0], evt.index[1]
|
| 264 |
+
label = "Add Mask"
|
| 265 |
+
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
|
| 266 |
+
255,
|
| 267 |
+
0,
|
| 268 |
+
255,
|
| 269 |
+
)
|
| 270 |
+
global_points.append([x, y])
|
| 271 |
+
global_point_label.append(1 if label == "Add Mask" else 0)
|
| 272 |
+
|
| 273 |
+
print(x, y, label == "Add Mask")
|
| 274 |
+
|
| 275 |
+
if image is not None:
|
| 276 |
+
draw = ImageDraw.Draw(image)
|
| 277 |
+
|
| 278 |
+
draw.ellipse(
|
| 279 |
+
[
|
| 280 |
+
(x - point_radius, y - point_radius),
|
| 281 |
+
(x + point_radius, y + point_radius),
|
| 282 |
+
],
|
| 283 |
+
fill=point_color,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
return image
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def get_points_with_draw_(image, cond_image, evt: gr.SelectData):
|
| 290 |
+
global global_points
|
| 291 |
+
global global_point_label
|
| 292 |
+
if len(global_points) == 0:
|
| 293 |
+
image = copy.deepcopy(cond_image)
|
| 294 |
+
if len(global_points) > 2:
|
| 295 |
+
return image
|
| 296 |
+
x, y = evt.index[0], evt.index[1]
|
| 297 |
+
label = "Add Mask"
|
| 298 |
+
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
|
| 299 |
+
255,
|
| 300 |
+
0,
|
| 301 |
+
255,
|
| 302 |
+
)
|
| 303 |
+
global_points.append([x, y])
|
| 304 |
+
global_point_label.append(1 if label == "Add Mask" else 0)
|
| 305 |
+
|
| 306 |
+
print(x, y, label == "Add Mask")
|
| 307 |
+
|
| 308 |
+
if image is not None:
|
| 309 |
+
draw = ImageDraw.Draw(image)
|
| 310 |
+
|
| 311 |
+
draw.ellipse(
|
| 312 |
+
[
|
| 313 |
+
(x - point_radius, y - point_radius),
|
| 314 |
+
(x + point_radius, y + point_radius),
|
| 315 |
+
],
|
| 316 |
+
fill=point_color,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
if len(global_points) == 2:
|
| 320 |
+
x1, y1 = global_points[0]
|
| 321 |
+
x2, y2 = global_points[1]
|
| 322 |
+
if x1 < x2:
|
| 323 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=5)
|
| 324 |
+
else:
|
| 325 |
+
draw.rectangle([x2, y2, x1, y1], outline="red", width=5)
|
| 326 |
+
global_points = global_points[::-1]
|
| 327 |
+
global_point_label = global_point_label[::-1]
|
| 328 |
+
|
| 329 |
+
return image
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
cond_img_p = gr.Image(label="Input with Point", value=default_example[0], type="pil")
|
| 333 |
+
cond_img_b = gr.Image(label="Input with Box", value=default_example[0], type="pil")
|
| 334 |
+
|
| 335 |
+
segm_img_p = gr.Image(
|
| 336 |
+
label="Segmented Image with Point-Prompt", interactive=False, type="pil"
|
| 337 |
+
)
|
| 338 |
+
segm_img_b = gr.Image(
|
| 339 |
+
label="Segmented Image with Box-Prompt", interactive=False, type="pil"
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
global_points = []
|
| 343 |
+
global_point_label = []
|
| 344 |
+
|
| 345 |
+
input_size_slider = gr.components.Slider(
|
| 346 |
+
minimum=512,
|
| 347 |
+
maximum=1024,
|
| 348 |
+
value=1024,
|
| 349 |
+
step=64,
|
| 350 |
+
label="Input_size",
|
| 351 |
+
info="Our model was trained on a size of 1024",
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
with gr.Blocks(css=css, title="Efficient SAM") as demo:
|
| 355 |
with gr.Row():
|
| 356 |
+
with gr.Column(scale=1):
|
| 357 |
+
# Title
|
| 358 |
+
gr.Markdown(title)
|
| 359 |
+
|
| 360 |
+
with gr.Tab("Point mode"):
|
| 361 |
+
# Images
|
| 362 |
+
with gr.Row(variant="panel"):
|
| 363 |
+
with gr.Column(scale=1):
|
| 364 |
+
cond_img_p.render()
|
| 365 |
+
|
| 366 |
+
with gr.Column(scale=1):
|
| 367 |
+
segm_img_p.render()
|
| 368 |
+
|
| 369 |
+
# Submit & Clear
|
| 370 |
+
# ###
|
| 371 |
+
with gr.Row():
|
| 372 |
+
with gr.Column():
|
| 373 |
+
|
| 374 |
+
with gr.Column():
|
| 375 |
+
segment_btn_p = gr.Button(
|
| 376 |
+
"Segment with Point Prompt", variant="primary"
|
| 377 |
+
)
|
| 378 |
+
clear_btn_p = gr.Button("Clear", variant="secondary")
|
| 379 |
+
|
| 380 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
| 381 |
+
gr.Examples(
|
| 382 |
+
examples=examples,
|
| 383 |
+
inputs=[cond_img_p],
|
| 384 |
+
examples_per_page=4,
|
| 385 |
+
)
|
| 386 |
|
| 387 |
+
with gr.Column():
|
| 388 |
+
# Description
|
| 389 |
+
gr.Markdown(description_p)
|
| 390 |
|
| 391 |
+
with gr.Tab("Box mode"):
|
| 392 |
+
# Images
|
| 393 |
+
with gr.Row(variant="panel"):
|
| 394 |
+
with gr.Column(scale=1):
|
| 395 |
+
cond_img_b.render()
|
| 396 |
|
| 397 |
+
with gr.Column(scale=1):
|
| 398 |
+
segm_img_b.render()
|
| 399 |
+
|
| 400 |
+
# Submit & Clear
|
| 401 |
+
with gr.Row():
|
| 402 |
+
with gr.Column():
|
| 403 |
+
|
| 404 |
+
with gr.Column():
|
| 405 |
+
segment_btn_b = gr.Button(
|
| 406 |
+
"Segment with Box Prompt", variant="primary"
|
| 407 |
+
)
|
| 408 |
+
clear_btn_b = gr.Button("Clear", variant="secondary")
|
| 409 |
+
|
| 410 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
| 411 |
+
gr.Examples(
|
| 412 |
+
examples=examples,
|
| 413 |
+
inputs=[cond_img_b],
|
| 414 |
+
examples_per_page=4,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
with gr.Column():
|
| 418 |
+
# Description
|
| 419 |
+
gr.Markdown(description_p)
|
| 420 |
+
|
| 421 |
+
cond_img_p.select(get_points_with_draw, [segm_img_p, cond_img_p], segm_img_p)
|
| 422 |
+
|
| 423 |
+
cond_img_b.select(get_points_with_draw_, [segm_img_b, cond_img_b], segm_img_b)
|
| 424 |
+
|
| 425 |
+
segment_btn_p.click(segment_with_points, inputs=[cond_img_p], outputs=segm_img_p)
|
| 426 |
+
|
| 427 |
+
segment_btn_b.click(
|
| 428 |
+
segment_with_boxs, inputs=[cond_img_b, segm_img_b], outputs=segm_img_b
|
| 429 |
+
)
|
| 430 |
|
| 431 |
+
def clear():
|
| 432 |
+
return None, None
|
| 433 |
|
| 434 |
+
def clear_text():
|
| 435 |
+
return None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
+
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
| 438 |
+
clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b])
|
| 439 |
|
| 440 |
+
demo.queue()
|
| 441 |
+
demo.launch(share=True)
|