Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModel, AutoConfig | |
| from main_idea_with_torch import predict_mainidea_sent_old | |
| from main_idea_with_pipeline import predict_mainidea_sent | |
| config = AutoConfig.from_pretrained("yutingg/custom-distill-bert-for-sentence-label", trust_remote_code=True) | |
| model = AutoModel.from_pretrained("yutingg/custom-distill-bert-for-sentence-label", trust_remote_code=True, config=config) | |
| def predict_main_idea(essay): | |
| ret = predict_mainidea_sent(essay, model), predict_mainidea_sent_old(essay, model) | |
| return ret | |
| with gr.Blocks() as main_idea_demo: | |
| with gr.Row(): | |
| essay_input = gr.Textbox(label="essay", lines=10) | |
| with gr.Row(): | |
| predict_button = gr.Button("Predict Main Idea Sentence") | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=600): | |
| output_1 = gr.Dataframe( | |
| label="pipeline output", | |
| headers=['label: is main idea', 'sentence'], | |
| datatype=["str", "str"], | |
| col_count=(2, "fixed"), | |
| ) | |
| with gr.Column(scale=1, min_width=600): | |
| output_2 = gr.Dataframe( | |
| label="torch output with Triage", | |
| headers=['label: is main idea', 'sentence'], | |
| datatype=["str", "str"], | |
| col_count=(2, "fixed"), | |
| ) | |
| predict_button.click(predict_main_idea, inputs=essay_input, outputs=[output_1, output_2]) | |
| main_idea_demo.launch() | |