Spaces:
Running
on
Zero
Running
on
Zero
bug fixes, faster ocr and restructure
Browse files- app.py +125 -158
- requirements.txt +4 -1
- utils.py +53 -0
app.py
CHANGED
|
@@ -1,23 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from unstructured.partition.pdf import partition_pdf
|
| 3 |
-
import pymupdf
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import numpy as np
|
| 6 |
import io
|
|
|
|
|
|
|
|
|
|
| 7 |
import pandas as pd
|
| 8 |
-
|
| 9 |
-
import gc
|
| 10 |
import torch
|
| 11 |
-
import
|
| 12 |
-
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
|
| 13 |
-
from chromadb.utils.data_loaders import ImageLoader
|
| 14 |
-
from sentence_transformers import SentenceTransformer
|
| 15 |
from chromadb.utils import embedding_functions
|
| 16 |
-
from
|
| 17 |
-
import base64
|
| 18 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
| 19 |
from langchain import PromptTemplate
|
| 20 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
if torch.cuda.is_available():
|
| 23 |
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
|
@@ -29,24 +29,17 @@ if torch.cuda.is_available():
|
|
| 29 |
)
|
| 30 |
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
image.save(img_byte_arr, format="PNG")
|
| 35 |
-
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
@spaces.GPU(duration=60*4)
|
| 39 |
-
def get_image_descriptions(images):
|
| 40 |
torch.cuda.empty_cache()
|
| 41 |
gc.collect()
|
| 42 |
|
| 43 |
descriptions = []
|
| 44 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
descriptions.append(processor.decode(output[0], skip_special_tokens=True))
|
| 50 |
return descriptions
|
| 51 |
|
| 52 |
|
|
@@ -55,39 +48,6 @@ CSS = """
|
|
| 55 |
"""
|
| 56 |
|
| 57 |
|
| 58 |
-
def extract_pdfs(docs, doc_collection):
|
| 59 |
-
if docs:
|
| 60 |
-
doc_collection = []
|
| 61 |
-
doc_collection.extend(docs)
|
| 62 |
-
return (
|
| 63 |
-
doc_collection,
|
| 64 |
-
gr.Tabs(selected=1),
|
| 65 |
-
pd.DataFrame([i.split("/")[-1] for i in list(docs)], columns=["Filename"]),
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def extract_images(docs):
|
| 70 |
-
images = []
|
| 71 |
-
for doc_path in docs:
|
| 72 |
-
doc = pymupdf.open(doc_path) # open a document
|
| 73 |
-
|
| 74 |
-
for page_index in range(len(doc)): # iterate over pdf pages
|
| 75 |
-
page = doc[page_index] # get the page
|
| 76 |
-
image_list = page.get_images()
|
| 77 |
-
|
| 78 |
-
for image_index, img in enumerate(
|
| 79 |
-
image_list, start=1
|
| 80 |
-
): # enumerate the image list
|
| 81 |
-
xref = img[0] # get the XREF of the image
|
| 82 |
-
pix = pymupdf.Pixmap(doc, xref) # create a Pixmap
|
| 83 |
-
|
| 84 |
-
if pix.n - pix.alpha > 3: # CMYK: convert to RGB first
|
| 85 |
-
pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
|
| 86 |
-
|
| 87 |
-
images.append(Image.open(io.BytesIO(pix.pil_tobytes("JPEG"))))
|
| 88 |
-
return images
|
| 89 |
-
|
| 90 |
-
|
| 91 |
# def get_vectordb(text, images, tables):
|
| 92 |
def get_vectordb(text, images):
|
| 93 |
client = chromadb.EphemeralClient()
|
|
@@ -99,7 +59,7 @@ def get_vectordb(text, images):
|
|
| 99 |
client.delete_collection("text_db")
|
| 100 |
if "image_db" in [i.name for i in client.list_collections()]:
|
| 101 |
client.delete_collection("image_db")
|
| 102 |
-
|
| 103 |
text_collection = client.get_or_create_collection(
|
| 104 |
name="text_db",
|
| 105 |
embedding_function=sentence_transformer_ef,
|
|
@@ -111,14 +71,21 @@ def get_vectordb(text, images):
|
|
| 111 |
data_loader=loader,
|
| 112 |
metadata={"hnsw:space": "cosine"},
|
| 113 |
)
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
image_collection.add(
|
| 120 |
ids=[str(i) for i in range(len(images))],
|
| 121 |
-
documents=
|
| 122 |
metadatas=image_dict,
|
| 123 |
)
|
| 124 |
|
|
@@ -127,7 +94,7 @@ def get_vectordb(text, images):
|
|
| 127 |
chunk_overlap=10,
|
| 128 |
)
|
| 129 |
|
| 130 |
-
if len(text)>0:
|
| 131 |
docs = splitter.create_documents([text])
|
| 132 |
doc_texts = [i.page_content for i in docs]
|
| 133 |
text_collection.add(
|
|
@@ -136,54 +103,31 @@ def get_vectordb(text, images):
|
|
| 136 |
return client
|
| 137 |
|
| 138 |
|
| 139 |
-
def extract_data_from_pdfs(docs, session, progress=gr.Progress()):
|
| 140 |
if len(docs) == 0:
|
| 141 |
raise gr.Error("No documents to process")
|
| 142 |
progress(0, "Extracting Images")
|
| 143 |
|
| 144 |
-
images = extract_images(docs)
|
| 145 |
|
| 146 |
progress(0.25, "Extracting Text")
|
| 147 |
|
| 148 |
strategy = "hi_res"
|
| 149 |
model_name = "yolox"
|
| 150 |
all_elements = []
|
| 151 |
-
|
| 152 |
-
for doc in docs:
|
| 153 |
-
elements = partition_pdf(
|
| 154 |
-
filename=doc,
|
| 155 |
-
strategy=strategy,
|
| 156 |
-
infer_table_structure=True,
|
| 157 |
-
model_name=model_name,
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
all_elements.extend(elements)
|
| 161 |
-
|
| 162 |
all_text = ""
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
if
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
continue
|
| 176 |
-
# tables.append(meta["metadata"]["text_as_html"])
|
| 177 |
-
|
| 178 |
-
# html = "<br>".join(tables)
|
| 179 |
-
# display = "<h3>Sample Tables</h3>" + "<br>".join(tables[:2])
|
| 180 |
-
# html = gr.HTML(html)
|
| 181 |
-
# vectordb = get_vectordb(all_text, images, tables)
|
| 182 |
-
|
| 183 |
-
progress(0.5, "Generating image descriptions")
|
| 184 |
-
image_descriptions = "\n".join(get_image_descriptions(images))
|
| 185 |
-
|
| 186 |
-
progress(0.75, "Inserting data into vector database")
|
| 187 |
vectordb = get_vectordb(all_text, images)
|
| 188 |
|
| 189 |
progress(1, "Completed")
|
|
@@ -205,7 +149,23 @@ sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFuncti
|
|
| 205 |
)
|
| 206 |
|
| 207 |
|
| 208 |
-
def conversation(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
text_collection = vectordb_client.get_collection(
|
| 211 |
"text_db", embedding_function=sentence_transformer_ef
|
|
@@ -217,8 +177,6 @@ def conversation(vectordb_client, msg, num_context, img_context, history):
|
|
| 217 |
results = text_collection.query(
|
| 218 |
query_texts=[msg], include=["documents"], n_results=num_context
|
| 219 |
)["documents"][0]
|
| 220 |
-
# print(results)
|
| 221 |
-
# print("R"*100)
|
| 222 |
similar_images = image_collection.query(
|
| 223 |
query_texts=[msg],
|
| 224 |
include=["metadatas", "distances", "documents"],
|
|
@@ -266,19 +224,12 @@ def get_stats(vectordb):
|
|
| 266 |
return "\n".join(text_data), "", ""
|
| 267 |
|
| 268 |
|
| 269 |
-
|
| 270 |
-
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 271 |
-
temperature=0.4,
|
| 272 |
-
max_new_tokens=800,
|
| 273 |
-
)
|
| 274 |
-
|
| 275 |
-
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
| 276 |
-
|
| 277 |
vectordb = gr.State()
|
| 278 |
doc_collection = gr.State(value=[])
|
| 279 |
session_states = gr.State(value={})
|
| 280 |
references = gr.State(value=[])
|
| 281 |
-
|
| 282 |
gr.Markdown(
|
| 283 |
"""<h2><center>Multimodal PDF Chatbot</center></h2>
|
| 284 |
<h3><center><b>Interact With Your PDF Documents</b></center></h3>"""
|
|
@@ -312,18 +263,23 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
| 312 |
embed = gr.Button(value="Extract Data")
|
| 313 |
with gr.Column():
|
| 314 |
next_p1 = gr.Button(value="Next")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
-
with gr.Row() as row:
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
value="<h1 style='text-align: center'>Click the 'Extract' button to extract data from PDFs<h1>"
|
| 326 |
-
)
|
| 327 |
|
| 328 |
with gr.Accordion("See Parts of Extracted Data", open=False):
|
| 329 |
with gr.Column(visible=True) as sample_data:
|
|
@@ -337,32 +293,37 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
| 337 |
label="Sample Extracted Images", columns=1, rows=2
|
| 338 |
)
|
| 339 |
|
| 340 |
-
|
| 341 |
-
|
| 342 |
with gr.TabItem("Chat", id=2) as chat_tab:
|
| 343 |
-
with gr.
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
with gr.Row():
|
| 367 |
with gr.Column():
|
| 368 |
ret_images = gr.Gallery("Similar Images", columns=1, rows=2)
|
|
@@ -370,14 +331,15 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
| 370 |
chatbot = gr.Chatbot(height=400)
|
| 371 |
with gr.Accordion("Text References", open=False):
|
| 372 |
# text_context = gr.Row()
|
| 373 |
-
|
| 374 |
@gr.render(inputs=references)
|
| 375 |
def gen_refs(references):
|
| 376 |
# print(references)
|
| 377 |
n = len(references)
|
| 378 |
for i in range(n):
|
| 379 |
-
gr.Textbox(
|
| 380 |
-
|
|
|
|
| 381 |
|
| 382 |
with gr.Row():
|
| 383 |
msg = gr.Textbox(
|
|
@@ -396,7 +358,7 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
| 396 |
)
|
| 397 |
embed.click(
|
| 398 |
extract_data_from_pdfs,
|
| 399 |
-
inputs=[doc_collection, session_states],
|
| 400 |
outputs=[
|
| 401 |
vectordb,
|
| 402 |
session_states,
|
|
@@ -409,13 +371,18 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
| 409 |
|
| 410 |
submit_btn.click(
|
| 411 |
conversation,
|
| 412 |
-
[vectordb, msg, num_context, img_context, chatbot],
|
| 413 |
-
[chatbot,references
|
| 414 |
)
|
| 415 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
|
| 417 |
back_p1.click(lambda: gr.Tabs(selected=0), None, tabs)
|
| 418 |
|
| 419 |
next_p1.click(check_validity_and_llm, session_states, tabs)
|
| 420 |
if __name__ == "__main__":
|
| 421 |
-
demo.launch()
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import chromadb
|
| 3 |
+
import gc
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import io
|
| 6 |
+
import numpy as np
|
| 7 |
+
import ocrmypdf
|
| 8 |
+
import os
|
| 9 |
import pandas as pd
|
| 10 |
+
import pymupdf
|
|
|
|
| 11 |
import torch
|
| 12 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 13 |
from chromadb.utils import embedding_functions
|
| 14 |
+
from chromadb.utils.data_loaders import ImageLoader
|
|
|
|
|
|
|
| 15 |
from langchain import PromptTemplate
|
| 16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 17 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 18 |
+
from pdfminer.high_level import extract_text
|
| 19 |
+
from transformers import LlavaNextForConditionalGeneration, LlavaNextProcessor
|
| 20 |
+
from utils import *
|
| 21 |
|
| 22 |
if torch.cuda.is_available():
|
| 23 |
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
|
|
|
| 29 |
)
|
| 30 |
|
| 31 |
|
| 32 |
+
@spaces.GPU()
|
| 33 |
+
def get_image_description(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
torch.cuda.empty_cache()
|
| 35 |
gc.collect()
|
| 36 |
|
| 37 |
descriptions = []
|
| 38 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
| 39 |
|
| 40 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
| 41 |
+
output = vision_model.generate(**inputs, max_new_tokens=100)
|
| 42 |
+
descriptions.append(processor.decode(output[0], skip_special_tokens=True))
|
|
|
|
| 43 |
return descriptions
|
| 44 |
|
| 45 |
|
|
|
|
| 48 |
"""
|
| 49 |
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# def get_vectordb(text, images, tables):
|
| 52 |
def get_vectordb(text, images):
|
| 53 |
client = chromadb.EphemeralClient()
|
|
|
|
| 59 |
client.delete_collection("text_db")
|
| 60 |
if "image_db" in [i.name for i in client.list_collections()]:
|
| 61 |
client.delete_collection("image_db")
|
| 62 |
+
|
| 63 |
text_collection = client.get_or_create_collection(
|
| 64 |
name="text_db",
|
| 65 |
embedding_function=sentence_transformer_ef,
|
|
|
|
| 71 |
data_loader=loader,
|
| 72 |
metadata={"hnsw:space": "cosine"},
|
| 73 |
)
|
| 74 |
+
descs = []
|
| 75 |
+
print(descs)
|
| 76 |
+
for image in images:
|
| 77 |
+
try:
|
| 78 |
+
descs.append(get_image_description(image)[0])
|
| 79 |
+
except:
|
| 80 |
+
descs.append("Could not generate image description due to some error")
|
| 81 |
+
|
| 82 |
+
# image_descriptions = get_image_descriptions(images)
|
| 83 |
+
image_dict = [{"image": image_to_bytes(img)} for img in images]
|
| 84 |
+
|
| 85 |
+
if len(images) > 0:
|
| 86 |
image_collection.add(
|
| 87 |
ids=[str(i) for i in range(len(images))],
|
| 88 |
+
documents=descs,
|
| 89 |
metadatas=image_dict,
|
| 90 |
)
|
| 91 |
|
|
|
|
| 94 |
chunk_overlap=10,
|
| 95 |
)
|
| 96 |
|
| 97 |
+
if len(text) > 0:
|
| 98 |
docs = splitter.create_documents([text])
|
| 99 |
doc_texts = [i.page_content for i in docs]
|
| 100 |
text_collection.add(
|
|
|
|
| 103 |
return client
|
| 104 |
|
| 105 |
|
| 106 |
+
def extract_data_from_pdfs(docs, session, include_images, progress=gr.Progress()):
|
| 107 |
if len(docs) == 0:
|
| 108 |
raise gr.Error("No documents to process")
|
| 109 |
progress(0, "Extracting Images")
|
| 110 |
|
| 111 |
+
# images = extract_images(docs)
|
| 112 |
|
| 113 |
progress(0.25, "Extracting Text")
|
| 114 |
|
| 115 |
strategy = "hi_res"
|
| 116 |
model_name = "yolox"
|
| 117 |
all_elements = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
all_text = ""
|
| 119 |
|
| 120 |
+
images = []
|
| 121 |
+
for doc in docs:
|
| 122 |
+
ocrmypdf.ocr(doc, "ocr.pdf", deskew=True, skip_text=True)
|
| 123 |
+
text = extract_text("ocr.pdf")
|
| 124 |
+
all_text += clean_text(text) + "\n\n"
|
| 125 |
+
if include_images == "Include Images":
|
| 126 |
+
images.extend(extract_images(["ocr.pdf"]))
|
| 127 |
+
|
| 128 |
+
progress(
|
| 129 |
+
0.6, "Generating image descriptions and inserting everything into vectorDB"
|
| 130 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
vectordb = get_vectordb(all_text, images)
|
| 132 |
|
| 133 |
progress(1, "Completed")
|
|
|
|
| 149 |
)
|
| 150 |
|
| 151 |
|
| 152 |
+
def conversation(
|
| 153 |
+
vectordb_client, msg, num_context, img_context, history, hf_token, model_path
|
| 154 |
+
):
|
| 155 |
+
if hf_token.strip() != "" and model_path.strip() != "":
|
| 156 |
+
llm = HuggingFaceEndpoint(
|
| 157 |
+
repo_id=model_path,
|
| 158 |
+
temperature=0.4,
|
| 159 |
+
max_new_tokens=800,
|
| 160 |
+
huggingfacehub_api_token=hf_token,
|
| 161 |
+
)
|
| 162 |
+
else:
|
| 163 |
+
llm = HuggingFaceEndpoint(
|
| 164 |
+
repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
|
| 165 |
+
temperature=0.4,
|
| 166 |
+
max_new_tokens=800,
|
| 167 |
+
huggingfacehub_api_token=os.getenv("P_HF_TOKEN", "None"),
|
| 168 |
+
)
|
| 169 |
|
| 170 |
text_collection = vectordb_client.get_collection(
|
| 171 |
"text_db", embedding_function=sentence_transformer_ef
|
|
|
|
| 177 |
results = text_collection.query(
|
| 178 |
query_texts=[msg], include=["documents"], n_results=num_context
|
| 179 |
)["documents"][0]
|
|
|
|
|
|
|
| 180 |
similar_images = image_collection.query(
|
| 181 |
query_texts=[msg],
|
| 182 |
include=["metadatas", "distances", "documents"],
|
|
|
|
| 224 |
return "\n".join(text_data), "", ""
|
| 225 |
|
| 226 |
|
| 227 |
+
with gr.Blocks(css=CSS, theme=gr.themes.Soft(text_size=sizes.text_md)) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
vectordb = gr.State()
|
| 229 |
doc_collection = gr.State(value=[])
|
| 230 |
session_states = gr.State(value={})
|
| 231 |
references = gr.State(value=[])
|
| 232 |
+
|
| 233 |
gr.Markdown(
|
| 234 |
"""<h2><center>Multimodal PDF Chatbot</center></h2>
|
| 235 |
<h3><center><b>Interact With Your PDF Documents</b></center></h3>"""
|
|
|
|
| 263 |
embed = gr.Button(value="Extract Data")
|
| 264 |
with gr.Column():
|
| 265 |
next_p1 = gr.Button(value="Next")
|
| 266 |
+
with gr.Row():
|
| 267 |
+
include_images = gr.Radio(
|
| 268 |
+
["Include Images", "Exclude Images"],
|
| 269 |
+
value="Include Images",
|
| 270 |
+
label="Include/ Exclude Images",
|
| 271 |
+
interactive=True,
|
| 272 |
+
)
|
| 273 |
|
| 274 |
+
with gr.Row(equal_height=True, variant="panel") as row:
|
| 275 |
+
selected = gr.Dataframe(
|
| 276 |
+
interactive=False,
|
| 277 |
+
col_count=(1, "fixed"),
|
| 278 |
+
headers=["Selected Files"],
|
| 279 |
+
)
|
| 280 |
+
prog = gr.HTML(
|
| 281 |
+
value="<h1 style='text-align: center'>Click the 'Extract' button to extract data from PDFs<h1>"
|
| 282 |
+
)
|
|
|
|
|
|
|
| 283 |
|
| 284 |
with gr.Accordion("See Parts of Extracted Data", open=False):
|
| 285 |
with gr.Column(visible=True) as sample_data:
|
|
|
|
| 293 |
label="Sample Extracted Images", columns=1, rows=2
|
| 294 |
)
|
| 295 |
|
|
|
|
|
|
|
| 296 |
with gr.TabItem("Chat", id=2) as chat_tab:
|
| 297 |
+
with gr.Accordion("Config (Advanced) (Optional)", open=False):
|
| 298 |
+
with gr.Row(variant="panel", equal_height=True):
|
| 299 |
+
choice = gr.Radio(
|
| 300 |
+
["chromaDB"],
|
| 301 |
+
value="chromaDB",
|
| 302 |
+
label="Vector Database",
|
| 303 |
+
interactive=True,
|
| 304 |
+
)
|
| 305 |
+
with gr.Accordion("Use your own model (optional)", open=False):
|
| 306 |
+
hf_token = gr.Textbox(
|
| 307 |
+
label="HuggingFace Token", interactive=True
|
| 308 |
+
)
|
| 309 |
+
model_path = gr.Textbox(label="Model Path", interactive=True)
|
| 310 |
+
with gr.Row(variant="panel", equal_height=True):
|
| 311 |
+
num_context = gr.Slider(
|
| 312 |
+
label="Number of text context elements",
|
| 313 |
+
minimum=1,
|
| 314 |
+
maximum=20,
|
| 315 |
+
step=1,
|
| 316 |
+
interactive=True,
|
| 317 |
+
value=3,
|
| 318 |
+
)
|
| 319 |
+
img_context = gr.Slider(
|
| 320 |
+
label="Number of image context elements",
|
| 321 |
+
minimum=1,
|
| 322 |
+
maximum=10,
|
| 323 |
+
step=1,
|
| 324 |
+
interactive=True,
|
| 325 |
+
value=2,
|
| 326 |
+
)
|
| 327 |
with gr.Row():
|
| 328 |
with gr.Column():
|
| 329 |
ret_images = gr.Gallery("Similar Images", columns=1, rows=2)
|
|
|
|
| 331 |
chatbot = gr.Chatbot(height=400)
|
| 332 |
with gr.Accordion("Text References", open=False):
|
| 333 |
# text_context = gr.Row()
|
| 334 |
+
|
| 335 |
@gr.render(inputs=references)
|
| 336 |
def gen_refs(references):
|
| 337 |
# print(references)
|
| 338 |
n = len(references)
|
| 339 |
for i in range(n):
|
| 340 |
+
gr.Textbox(
|
| 341 |
+
label=f"Reference-{i+1}", value=references[i], lines=3
|
| 342 |
+
)
|
| 343 |
|
| 344 |
with gr.Row():
|
| 345 |
msg = gr.Textbox(
|
|
|
|
| 358 |
)
|
| 359 |
embed.click(
|
| 360 |
extract_data_from_pdfs,
|
| 361 |
+
inputs=[doc_collection, session_states, include_images],
|
| 362 |
outputs=[
|
| 363 |
vectordb,
|
| 364 |
session_states,
|
|
|
|
| 371 |
|
| 372 |
submit_btn.click(
|
| 373 |
conversation,
|
| 374 |
+
[vectordb, msg, num_context, img_context, chatbot, hf_token, model_path],
|
| 375 |
+
[chatbot, references, ret_images],
|
| 376 |
)
|
| 377 |
|
| 378 |
+
msg.submit(
|
| 379 |
+
conversation,
|
| 380 |
+
[vectordb, msg, num_context, img_context, chatbot, hf_token, model_path],
|
| 381 |
+
[chatbot, references, ret_images],
|
| 382 |
+
)
|
| 383 |
|
| 384 |
back_p1.click(lambda: gr.Tabs(selected=0), None, tabs)
|
| 385 |
|
| 386 |
next_p1.click(check_validity_and_llm, session_states, tabs)
|
| 387 |
if __name__ == "__main__":
|
| 388 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
chromadb==0.5.3
|
| 2 |
langchain==0.2.5
|
| 3 |
langchain_community==0.2.5
|
|
|
|
| 4 |
numpy<2.0.0
|
| 5 |
pandas==2.2.2
|
| 6 |
Pillow==10.3.0
|
|
@@ -8,4 +9,6 @@ pymupdf==1.24.5
|
|
| 8 |
sentence_transformers==3.0.1
|
| 9 |
unstructured[all-docs]
|
| 10 |
accelerate
|
| 11 |
-
bitsandbytes
|
|
|
|
|
|
|
|
|
| 1 |
chromadb==0.5.3
|
| 2 |
langchain==0.2.5
|
| 3 |
langchain_community==0.2.5
|
| 4 |
+
langchain-huggingface
|
| 5 |
numpy<2.0.0
|
| 6 |
pandas==2.2.2
|
| 7 |
Pillow==10.3.0
|
|
|
|
| 9 |
sentence_transformers==3.0.1
|
| 10 |
unstructured[all-docs]
|
| 11 |
accelerate
|
| 12 |
+
bitsandbytes
|
| 13 |
+
easyocr
|
| 14 |
+
ocrmypdf
|
utils.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pymupdf
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import io
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def image_to_bytes(image):
|
| 9 |
+
img_byte_arr = io.BytesIO()
|
| 10 |
+
image.save(img_byte_arr, format="PNG")
|
| 11 |
+
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def extract_pdfs(docs, doc_collection):
|
| 15 |
+
if docs:
|
| 16 |
+
doc_collection = []
|
| 17 |
+
doc_collection.extend(docs)
|
| 18 |
+
return (
|
| 19 |
+
doc_collection,
|
| 20 |
+
gr.Tabs(selected=1),
|
| 21 |
+
pd.DataFrame([i.split("/")[-1] for i in list(docs)], columns=["Filename"]),
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def extract_images(docs):
|
| 26 |
+
images = []
|
| 27 |
+
for doc_path in docs:
|
| 28 |
+
doc = pymupdf.open(doc_path) # open a document
|
| 29 |
+
|
| 30 |
+
for page_index in range(len(doc)): # iterate over pdf pages
|
| 31 |
+
page = doc[page_index] # get the page
|
| 32 |
+
image_list = page.get_images()
|
| 33 |
+
|
| 34 |
+
for image_index, img in enumerate(
|
| 35 |
+
image_list, start=1
|
| 36 |
+
): # enumerate the image list
|
| 37 |
+
xref = img[0] # get the XREF of the image
|
| 38 |
+
pix = pymupdf.Pixmap(doc, xref) # create a Pixmap
|
| 39 |
+
|
| 40 |
+
if pix.n - pix.alpha > 3: # CMYK: convert to RGB first
|
| 41 |
+
pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
|
| 42 |
+
|
| 43 |
+
images.append(Image.open(io.BytesIO(pix.pil_tobytes("JPEG"))))
|
| 44 |
+
return images
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def clean_text(text):
|
| 48 |
+
text = text.strip()
|
| 49 |
+
cleaned_text = text.replace("\n", " ")
|
| 50 |
+
cleaned_text = cleaned_text.replace("\t", " ")
|
| 51 |
+
cleaned_text = cleaned_text.replace(" ", " ")
|
| 52 |
+
cleaned_text = cleaned_text.strip()
|
| 53 |
+
return cleaned_text
|