Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,143 +5,294 @@ import gc
|
|
| 5 |
from huggingface_hub.utils import HfHubHTTPError
|
| 6 |
from langchain_core.prompts import PromptTemplate
|
| 7 |
from langchain_huggingface import HuggingFaceEndpoint
|
| 8 |
-
|
| 9 |
-
from
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
-
from
|
|
|
|
|
|
|
|
|
|
| 14 |
from welcome_text import WELCOME_INTRO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
import chromadb
|
| 16 |
from chromadb.utils import embedding_functions
|
|
|
|
|
|
|
|
|
|
| 17 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# ─────────────────────────────────────────────────────────────────────────────
|
| 21 |
-
#
|
| 22 |
-
|
|
|
|
| 23 |
processor = None
|
| 24 |
vision_model = None
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
"db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
|
| 29 |
-
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
|
| 30 |
-
}
|
| 31 |
-
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 32 |
-
model_name="all-MiniLM-L6-v2"
|
| 33 |
)
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
global processor, vision_model
|
|
|
|
|
|
|
| 37 |
if processor is None or vision_model is None:
|
| 38 |
-
|
| 39 |
-
vlm = "llava-hf/llava-v1.6-mistral-7b-hf"
|
| 40 |
-
processor = LlavaNextProcessor.from_pretrained(vlm)
|
| 41 |
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
).to("cuda")
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
| 46 |
-
inputs = processor(prompt,
|
| 47 |
-
|
| 48 |
-
return processor.decode(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def extract_data_from_pdfs(
|
| 51 |
-
docs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
):
|
| 53 |
if not docs:
|
| 54 |
raise gr.Error("No documents to process")
|
| 55 |
|
| 56 |
-
# 1)
|
| 57 |
-
local_ocr = None
|
| 58 |
if do_ocr == "Get Text With OCR":
|
| 59 |
db_m, crnn_m = OCR_CHOICES[ocr_choice]
|
| 60 |
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
# 2)
|
| 63 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
| 64 |
-
vis = LlavaNextForConditionalGeneration
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
| 68 |
-
# 3)
|
| 69 |
-
def describe(img
|
| 70 |
torch.cuda.empty_cache(); gc.collect()
|
| 71 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
| 72 |
inp = proc(prompt, img, return_tensors="pt").to("cuda")
|
| 73 |
out = vis.generate(**inp, max_new_tokens=100)
|
| 74 |
return proc.decode(out[0], skip_special_tokens=True)
|
| 75 |
-
|
|
|
|
| 76 |
get_image_description = describe
|
| 77 |
|
| 78 |
-
# 4)
|
| 79 |
progress(0.2, "Extracting text and images…")
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
if local_ocr:
|
| 83 |
-
pdf = DocumentFile.from_pdf(
|
| 84 |
res = local_ocr(pdf)
|
| 85 |
-
|
| 86 |
else:
|
| 87 |
-
|
| 88 |
|
| 89 |
if include_images == "Include Images":
|
| 90 |
-
imgs = extract_images([
|
| 91 |
images.extend(imgs)
|
| 92 |
-
names.extend([os.path.basename(
|
| 93 |
|
| 94 |
-
# 5) Build
|
| 95 |
progress(0.6, "Indexing in vector DB…")
|
| 96 |
-
client =
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
if images:
|
| 105 |
-
descs, metas = [], []
|
| 106 |
-
for i, im in enumerate(images):
|
| 107 |
-
cap = get_image_description(im)
|
| 108 |
-
descs.append(f"{names[i]}: {cap}")
|
| 109 |
-
metas.append({"image": image_to_bytes(im)})
|
| 110 |
-
img_col.add(ids=[str(i) for i in range(len(images))],
|
| 111 |
-
documents=descs, metadatas=metas)
|
| 112 |
|
| 113 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 114 |
-
docs_ = splitter.create_documents([full_text])
|
| 115 |
-
text_col.add(ids=[str(i) for i in range(len(docs_))],
|
| 116 |
-
documents=[d.page_content for d in docs_])
|
| 117 |
|
| 118 |
-
CURRENT_VDB = client
|
| 119 |
-
session["processed"] = True
|
| 120 |
-
sample = images[:4] if include_images=="Include Images" else []
|
| 121 |
-
return session, full_text[:2000]+"...", sample, "<h3>Done!</h3>"
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
raise gr.Error("Please extract data first")
|
| 127 |
|
| 128 |
-
#
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
#
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
img_descs = img_q["documents"][0] or ["No images found"]
|
| 137 |
images = []
|
| 138 |
-
for
|
| 139 |
-
|
| 140 |
-
try:
|
| 141 |
-
|
|
|
|
|
|
|
| 142 |
img_desc = "\n".join(img_descs)
|
| 143 |
|
| 144 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
prompt = PromptTemplate(
|
| 146 |
template="""
|
| 147 |
Context:
|
|
@@ -154,23 +305,23 @@ Question:
|
|
| 154 |
{q}
|
| 155 |
|
| 156 |
Answer:
|
| 157 |
-
""", input_variables=["text","img_desc","q"]
|
|
|
|
| 158 |
inp = prompt.format(text="\n\n".join(docs), img_desc=img_desc, q=question)
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
temperature=temp, max_new_tokens=max_tok,
|
| 163 |
-
huggingfacehub_api_token=HF_TOKEN
|
| 164 |
-
)
|
| 165 |
-
try: ans = llm.invoke(inp)
|
| 166 |
except HfHubHTTPError as e:
|
| 167 |
-
|
| 168 |
except Exception as e:
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
new_hist = history + [{"role":"user","content":question},
|
| 172 |
-
{"role":"assistant","content":ans}]
|
| 173 |
-
return new_hist, docs, images
|
| 174 |
|
| 175 |
|
| 176 |
|
|
@@ -258,4 +409,4 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
| 258 |
)
|
| 259 |
|
| 260 |
if __name__ == "__main__":
|
| 261 |
-
demo.launch()
|
|
|
|
| 5 |
from huggingface_hub.utils import HfHubHTTPError
|
| 6 |
from langchain_core.prompts import PromptTemplate
|
| 7 |
from langchain_huggingface import HuggingFaceEndpoint
|
| 8 |
+
import io, base64
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import torch
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import spaces
|
| 13 |
+
import numpy as np
|
| 14 |
+
import pandas as pd
|
| 15 |
+
import pymupdf
|
| 16 |
from PIL import Image
|
| 17 |
+
from pypdf import PdfReader
|
| 18 |
+
from dotenv import load_dotenv
|
| 19 |
+
import shutil
|
| 20 |
+
from chromadb.config import Settings, DEFAULT_TENANT, DEFAULT_DATABASE
|
| 21 |
from welcome_text import WELCOME_INTRO
|
| 22 |
+
|
| 23 |
+
from doctr.io import DocumentFile
|
| 24 |
+
from doctr.models import ocr_predictor
|
| 25 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
| 26 |
+
|
| 27 |
import chromadb
|
| 28 |
from chromadb.utils import embedding_functions
|
| 29 |
+
from chromadb.utils.data_loaders import ImageLoader
|
| 30 |
+
|
| 31 |
+
from langchain_core.prompts import PromptTemplate
|
| 32 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 33 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 34 |
+
|
| 35 |
+
from utils import extract_pdfs, extract_images, clean_text, image_to_bytes
|
| 36 |
+
from utils import *
|
| 37 |
|
| 38 |
# ─────────────────────────────────────────────────────────────────────────────
|
| 39 |
+
# Load .env
|
| 40 |
+
load_dotenv()
|
| 41 |
+
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 42 |
processor = None
|
| 43 |
vision_model = None
|
| 44 |
+
# OCR + multimodal image description setup
|
| 45 |
+
ocr_model = ocr_predictor(
|
| 46 |
+
"db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
| 49 |
+
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
| 50 |
+
"llava-hf/llava-v1.6-mistral-7b-hf",
|
| 51 |
+
torch_dtype=torch.float16,
|
| 52 |
+
low_cpu_mem_usage=True
|
| 53 |
+
).to("cuda")
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Add at the top of your module, alongside your other globals
|
| 57 |
+
PERSIST_DIR = "./chroma_db"
|
| 58 |
+
if os.path.exists(PERSIST_DIR):
|
| 59 |
+
shutil.rmtree(PERSIST_DIR)
|
| 60 |
+
|
| 61 |
+
@spaces.GPU()
|
| 62 |
+
def get_image_description(image: Image.Image) -> str:
|
| 63 |
+
"""
|
| 64 |
+
Lazy-loads the Llava processor + model inside the GPU worker,
|
| 65 |
+
runs captioning, and returns a one-sentence description.
|
| 66 |
+
"""
|
| 67 |
global processor, vision_model
|
| 68 |
+
|
| 69 |
+
# On first call, instantiate + move to CUDA
|
| 70 |
if processor is None or vision_model is None:
|
| 71 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
|
|
|
|
|
|
| 72 |
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
| 73 |
+
"llava-hf/llava-v1.6-mistral-7b-hf",
|
| 74 |
+
torch_dtype=torch.float16,
|
| 75 |
+
low_cpu_mem_usage=True
|
| 76 |
).to("cuda")
|
| 77 |
+
|
| 78 |
+
torch.cuda.empty_cache()
|
| 79 |
+
gc.collect()
|
| 80 |
+
|
| 81 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
| 82 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
|
| 83 |
+
output = vision_model.generate(**inputs, max_new_tokens=100)
|
| 84 |
+
return processor.decode(output[0], skip_special_tokens=True)
|
| 85 |
+
|
| 86 |
+
# Vector DB setup
|
| 87 |
+
# at top of file, alongside your other imports
|
| 88 |
+
from chromadb.utils import embedding_functions
|
| 89 |
+
from chromadb.utils.data_loaders import ImageLoader
|
| 90 |
+
import chromadb
|
| 91 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 92 |
+
from utils import image_to_bytes # your helper
|
| 93 |
+
|
| 94 |
+
# 1) Create one shared embedding function (defaulting to All-MiniLM-L6-v2, 384-dim)
|
| 95 |
+
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 96 |
+
model_name="all-MiniLM-L6-v2"
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
def get_vectordb(text: str, images: list[Image.Image], img_names: list[str]):
|
| 100 |
+
"""
|
| 101 |
+
Build a *persistent* ChromaDB instance on disk, with two collections:
|
| 102 |
+
• text_db (chunks of the PDF text)
|
| 103 |
+
• image_db (image descriptions + raw image bytes)
|
| 104 |
+
"""
|
| 105 |
+
# 1) Make or clean the on-disk folder
|
| 106 |
+
shutil.rmtree(PERSIST_DIR, ignore_errors=True)
|
| 107 |
+
os.makedirs(PERSIST_DIR, exist_ok=True)
|
| 108 |
+
|
| 109 |
+
client = chromadb.PersistentClient(
|
| 110 |
+
path=PERSIST_DIR,
|
| 111 |
+
settings=Settings(),
|
| 112 |
+
tenant=DEFAULT_TENANT,
|
| 113 |
+
database=DEFAULT_DATABASE
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# 3) Create / wipe collections
|
| 117 |
+
for col in ("text_db", "image_db"):
|
| 118 |
+
if col in [c.name for c in client.list_collections()]:
|
| 119 |
+
client.delete_collection(col)
|
| 120 |
+
|
| 121 |
+
text_col = client.get_or_create_collection(
|
| 122 |
+
name="text_db",
|
| 123 |
+
embedding_function=SHARED_EMB_FN
|
| 124 |
+
)
|
| 125 |
+
img_col = client.get_or_create_collection(
|
| 126 |
+
name="image_db",
|
| 127 |
+
embedding_function=SHARED_EMB_FN,
|
| 128 |
+
metadata={"hnsw:space": "cosine"}
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# 4) Add images
|
| 132 |
+
if images:
|
| 133 |
+
descs, metas = [], []
|
| 134 |
+
for idx, img in enumerate(images):
|
| 135 |
+
try:
|
| 136 |
+
cap = get_image_description(img)
|
| 137 |
+
except:
|
| 138 |
+
cap = "⚠️ could not describe image"
|
| 139 |
+
descs.append(f"{img_names[idx]}: {cap}")
|
| 140 |
+
metas.append({"image": image_to_bytes(img)})
|
| 141 |
+
img_col.add(ids=[str(i) for i in range(len(images))],
|
| 142 |
+
documents=descs,
|
| 143 |
+
metadatas=metas)
|
| 144 |
+
|
| 145 |
+
# 5) Chunk & add text
|
| 146 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 147 |
+
docs = splitter.create_documents([text])
|
| 148 |
+
text_col.add(ids=[str(i) for i in range(len(docs))],
|
| 149 |
+
documents=[d.page_content for d in docs])
|
| 150 |
+
|
| 151 |
+
return client
|
| 152 |
+
|
| 153 |
+
|
| 154 |
|
| 155 |
+
|
| 156 |
+
# Text extraction
|
| 157 |
+
def result_to_text(result, as_text=False):
|
| 158 |
+
pages = []
|
| 159 |
+
for pg in result.pages:
|
| 160 |
+
txt = " ".join(w.value for block in pg.blocks for line in block.lines for w in line.words)
|
| 161 |
+
pages.append(clean_text(txt))
|
| 162 |
+
return "\n\n".join(pages) if as_text else pages
|
| 163 |
+
|
| 164 |
+
OCR_CHOICES = {
|
| 165 |
+
"db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
|
| 166 |
+
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
@spaces.GPU()
|
| 170 |
def extract_data_from_pdfs(
|
| 171 |
+
docs: list[str],
|
| 172 |
+
session: dict,
|
| 173 |
+
include_images: str,
|
| 174 |
+
do_ocr: str,
|
| 175 |
+
ocr_choice: str,
|
| 176 |
+
vlm_choice: str,
|
| 177 |
+
progress=gr.Progress()
|
| 178 |
):
|
| 179 |
if not docs:
|
| 180 |
raise gr.Error("No documents to process")
|
| 181 |
|
| 182 |
+
# 1) OCR pipeline if requested
|
|
|
|
| 183 |
if do_ocr == "Get Text With OCR":
|
| 184 |
db_m, crnn_m = OCR_CHOICES[ocr_choice]
|
| 185 |
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
|
| 186 |
+
else:
|
| 187 |
+
local_ocr = None
|
| 188 |
|
| 189 |
+
# 2) Vision–language model
|
| 190 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
| 191 |
+
vis = (LlavaNextForConditionalGeneration
|
| 192 |
+
.from_pretrained(vlm_choice, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
| 193 |
+
.to("cuda"))
|
| 194 |
|
| 195 |
+
# 3) Monkey-patch caption fn
|
| 196 |
+
def describe(img):
|
| 197 |
torch.cuda.empty_cache(); gc.collect()
|
| 198 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
| 199 |
inp = proc(prompt, img, return_tensors="pt").to("cuda")
|
| 200 |
out = vis.generate(**inp, max_new_tokens=100)
|
| 201 |
return proc.decode(out[0], skip_special_tokens=True)
|
| 202 |
+
|
| 203 |
+
global get_image_description
|
| 204 |
get_image_description = describe
|
| 205 |
|
| 206 |
+
# 4) Extract text & images
|
| 207 |
progress(0.2, "Extracting text and images…")
|
| 208 |
+
all_text = ""
|
| 209 |
+
images, names = [], []
|
| 210 |
+
for path in docs:
|
| 211 |
if local_ocr:
|
| 212 |
+
pdf = DocumentFile.from_pdf(path)
|
| 213 |
res = local_ocr(pdf)
|
| 214 |
+
all_text += result_to_text(res, as_text=True) + "\n\n"
|
| 215 |
else:
|
| 216 |
+
all_text += (PdfReader(path).pages[0].extract_text() or "") + "\n\n"
|
| 217 |
|
| 218 |
if include_images == "Include Images":
|
| 219 |
+
imgs = extract_images([path])
|
| 220 |
images.extend(imgs)
|
| 221 |
+
names.extend([os.path.basename(path)] * len(imgs))
|
| 222 |
|
| 223 |
+
# 5) Build + persist the vectordb
|
| 224 |
progress(0.6, "Indexing in vector DB…")
|
| 225 |
+
client = get_vectordb(all_text, images, names)
|
| 226 |
+
|
| 227 |
+
# 6) Mark session and return UI outputs
|
| 228 |
+
session["processed"] = True
|
| 229 |
+
session["persist_directory"] = PERSIST_DIR
|
| 230 |
+
sample_imgs = images[:4] if include_images == "Include Images" else []
|
| 231 |
+
|
| 232 |
+
return (
|
| 233 |
+
session, # gr.State
|
| 234 |
+
all_text[:2000] + "...",
|
| 235 |
+
sample_imgs,
|
| 236 |
+
"<h3>Done!</h3>"
|
| 237 |
+
)
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
+
# Chat function
|
| 243 |
+
def conversation(
|
| 244 |
+
session: dict,
|
| 245 |
+
question: str,
|
| 246 |
+
num_ctx: int,
|
| 247 |
+
img_ctx: int,
|
| 248 |
+
history: list,
|
| 249 |
+
temp: float,
|
| 250 |
+
max_tok: int,
|
| 251 |
+
model_id: str
|
| 252 |
+
):
|
| 253 |
+
pd = session.get("persist_directory")
|
| 254 |
+
if not session.get("processed") or not pd:
|
| 255 |
raise gr.Error("Please extract data first")
|
| 256 |
|
| 257 |
+
# 1) Reopen the same persistent client (new API)
|
| 258 |
+
client = chromadb.PersistentClient(
|
| 259 |
+
path=pd,
|
| 260 |
+
settings=Settings(),
|
| 261 |
+
tenant=DEFAULT_TENANT,
|
| 262 |
+
database=DEFAULT_DATABASE
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
|
| 266 |
+
# 2) Text retrieval
|
| 267 |
+
text_col = client.get_collection("text_db")
|
| 268 |
+
docs = text_col.query(query_texts=[question],
|
| 269 |
+
n_results=int(num_ctx),
|
| 270 |
+
include=["documents"])["documents"][0]
|
| 271 |
+
|
| 272 |
+
# 3) Image retrieval
|
| 273 |
+
img_col = client.get_collection("image_db")
|
| 274 |
+
img_q = img_col.query(query_texts=[question],
|
| 275 |
+
n_results=int(img_ctx),
|
| 276 |
+
include=["metadatas","documents"])
|
| 277 |
img_descs = img_q["documents"][0] or ["No images found"]
|
| 278 |
images = []
|
| 279 |
+
for meta in img_q["metadatas"][0]:
|
| 280 |
+
b64 = meta.get("image","")
|
| 281 |
+
try:
|
| 282 |
+
images.append(Image.open(io.BytesIO(base64.b64decode(b64))))
|
| 283 |
+
except:
|
| 284 |
+
pass
|
| 285 |
img_desc = "\n".join(img_descs)
|
| 286 |
|
| 287 |
+
# 4) Build prompt & call LLM
|
| 288 |
+
llm = HuggingFaceEndpoint(
|
| 289 |
+
repo_id=model_id,
|
| 290 |
+
task="text-generation",
|
| 291 |
+
temperature=temp,
|
| 292 |
+
max_new_tokens=max_tok,
|
| 293 |
+
huggingfacehub_api_token=HF_TOKEN
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
prompt = PromptTemplate(
|
| 297 |
template="""
|
| 298 |
Context:
|
|
|
|
| 305 |
{q}
|
| 306 |
|
| 307 |
Answer:
|
| 308 |
+
""", input_variables=["text","img_desc","q"]
|
| 309 |
+
)
|
| 310 |
inp = prompt.format(text="\n\n".join(docs), img_desc=img_desc, q=question)
|
| 311 |
|
| 312 |
+
try:
|
| 313 |
+
answer = llm.invoke(inp)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
except HfHubHTTPError as e:
|
| 315 |
+
answer = "❌ Model not hosted" if e.response.status_code==404 else f"⚠️ HF error: {e}"
|
| 316 |
except Exception as e:
|
| 317 |
+
answer = f"⚠️ Unexpected error: {e}"
|
| 318 |
+
|
| 319 |
+
new_history = history + [
|
| 320 |
+
{"role":"user", "content":question},
|
| 321 |
+
{"role":"assistant","content":answer}
|
| 322 |
+
]
|
| 323 |
+
return new_history, docs, images
|
| 324 |
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
|
| 327 |
|
|
|
|
| 409 |
)
|
| 410 |
|
| 411 |
if __name__ == "__main__":
|
| 412 |
+
demo.launch()
|