File size: 1,315 Bytes
7400283
9854ee3
a4e347a
 
b3e5e27
d7f0c18
 
b3e5e27
d7f0c18
a4e347a
b3e5e27
 
 
d7f0c18
7400283
d7f0c18
9854ee3
b3e5e27
 
9854ee3
 
 
 
 
b3e5e27
8876f3b
b3e5e27
 
d7f0c18
b3e5e27
 
 
d7f0c18
 
 
b3e5e27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import gradio as gr
import logging
from transformers import pipeline

# Set up logging
logging.basicConfig(level=logging.INFO)

# Load Whisper model (tiny version for speed)
asr = pipeline(task="automatic-speech-recognition", model="openai/whisper-tiny.en")

# Function to transcribe audio from a file path
def transcribe_speech(audio_path):
    if audio_path is None:
        logging.error("No audio provided.")
        return "No audio found, please retry."

    try:
        logging.info(f"Received audio file path: {audio_path}")
        output = asr(audio_path)
        return output["text"]
    except Exception as e:
        logging.error(f"Error during transcription: {str(e)}")
        return f"Error processing the audio file: {str(e)}"

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# 🎀 Simple Speech Recognition App")
    gr.Markdown("Record or upload audio, then click **Transcribe Audio**")

    mic = gr.Audio(label="πŸŽ™οΈ Microphone or Upload", type="filepath")  # This is the key change
    transcribe_button = gr.Button("πŸ“ Transcribe Audio")
    transcription = gr.Textbox(label="πŸ—’οΈ Transcription", lines=3, placeholder="Transcription will appear here...")

    transcribe_button.click(fn=transcribe_speech, inputs=mic, outputs=transcription)

demo.launch(share=True)