Charles Chan
commited on
Commit
·
cb8213b
1
Parent(s):
9ddf764
coding
Browse files- app.py +26 -1
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import streamlit as st
|
|
| 2 |
from langchain_community.llms import HuggingFaceHub
|
| 3 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
| 4 |
from langchain_community.vectorstores import FAISS
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# 1. 准备知识库数据 (示例)
|
| 7 |
knowledge_base = [
|
|
@@ -12,10 +14,19 @@ knowledge_base = [
|
|
| 12 |
"Gemma 支持多种语言。"
|
| 13 |
]
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# 2. 构建向量数据库 (如果需要,仅构建一次)
|
| 16 |
try:
|
| 17 |
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
| 18 |
-
db = FAISS.from_texts(
|
| 19 |
except Exception as e:
|
| 20 |
st.error(f"向量数据库构建失败:{e}")
|
| 21 |
st.stop()
|
|
@@ -56,6 +67,20 @@ temperature = st.number_input("temperature", value=1.0)
|
|
| 56 |
max_length = st.number_input("max_length", value=1024)
|
| 57 |
question = st.text_area("请输入问题", "Gemma 有哪些特点?")
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
if st.button("提交"):
|
| 60 |
if not question:
|
| 61 |
st.warning("请输入问题!")
|
|
|
|
| 2 |
from langchain_community.llms import HuggingFaceHub
|
| 3 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
| 4 |
from langchain_community.vectorstores import FAISS
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
import random
|
| 7 |
|
| 8 |
# 1. 准备知识库数据 (示例)
|
| 9 |
knowledge_base = [
|
|
|
|
| 14 |
"Gemma 支持多种语言。"
|
| 15 |
]
|
| 16 |
|
| 17 |
+
try:
|
| 18 |
+
dataset = load_dataset("rorubyy/attack_on_titan_wiki_chinese")
|
| 19 |
+
answer_list = [example["Answer"] for example in dataset["train"]]
|
| 20 |
+
|
| 21 |
+
except Exception as e:
|
| 22 |
+
st.error(f"读取数据集失败:{e}")
|
| 23 |
+
st.stop()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
# 2. 构建向量数据库 (如果需要,仅构建一次)
|
| 27 |
try:
|
| 28 |
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
| 29 |
+
db = FAISS.from_texts(answer_list, embeddings)
|
| 30 |
except Exception as e:
|
| 31 |
st.error(f"向量数据库构建失败:{e}")
|
| 32 |
st.stop()
|
|
|
|
| 67 |
max_length = st.number_input("max_length", value=1024)
|
| 68 |
question = st.text_area("请输入问题", "Gemma 有哪些特点?")
|
| 69 |
|
| 70 |
+
if st.button("随机"):
|
| 71 |
+
dataset_size = len(dataset["train"])
|
| 72 |
+
random_index = random.randint(0, dataset_size - 1)
|
| 73 |
+
# 读取随机问题
|
| 74 |
+
random_question = dataset["train"][random_index]["Question"]
|
| 75 |
+
origin_answer = dataset["train"][random_index]["Answer"]
|
| 76 |
+
st.write("随机问题:")
|
| 77 |
+
st.write(random_question)
|
| 78 |
+
st.write("原始答案:")
|
| 79 |
+
st.write(origin_answer)
|
| 80 |
+
answer = answer_question(gemma, float(temperature), int(max_length), random_question)
|
| 81 |
+
st.write("生成答案:")
|
| 82 |
+
st.write(answer)
|
| 83 |
+
|
| 84 |
if st.button("提交"):
|
| 85 |
if not question:
|
| 86 |
st.warning("请输入问题!")
|
requirements.txt
CHANGED
|
@@ -5,3 +5,4 @@ langchain-community
|
|
| 5 |
langchain-huggingface
|
| 6 |
sentence_transformers
|
| 7 |
faiss-cpu
|
|
|
|
|
|
| 5 |
langchain-huggingface
|
| 6 |
sentence_transformers
|
| 7 |
faiss-cpu
|
| 8 |
+
datasets
|