Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,55 @@
|
|
|
|
|
| 1 |
from langchain.llms import HuggingFaceHub
|
| 2 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 3 |
from langchain.vectorstores import FAISS
|
| 4 |
|
| 5 |
# 1. 初始化 Gemma 模型
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
# 2. 准备知识库数据
|
| 9 |
knowledge_base = [
|
| 10 |
"Gemma 是 Google 开发的大型语言模型。",
|
| 11 |
"Gemma 具有强大的自然语言处理能力。",
|
| 12 |
-
"Gemma 可以用于问答、对话、文本生成等任务。"
|
|
|
|
|
|
|
| 13 |
]
|
| 14 |
|
| 15 |
-
# 3. 构建向量数据库
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# 4. 问答函数
|
| 20 |
def answer_question(question):
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
# 5.
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
from langchain.llms import HuggingFaceHub
|
| 3 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 4 |
from langchain.vectorstores import FAISS
|
| 5 |
|
| 6 |
# 1. 初始化 Gemma 模型
|
| 7 |
+
try:
|
| 8 |
+
llm = HuggingFaceHub(repo_id="google/gemma-7b-it", model_kwargs={"temperature": 0.5, "max_length": 512})
|
| 9 |
+
except Exception as e:
|
| 10 |
+
st.error(f"Gemma 模型加载失败:{e}")
|
| 11 |
+
st.stop()
|
| 12 |
|
| 13 |
+
# 2. 准备知识库数据 (示例)
|
| 14 |
knowledge_base = [
|
| 15 |
"Gemma 是 Google 开发的大型语言模型。",
|
| 16 |
"Gemma 具有强大的自然语言处理能力。",
|
| 17 |
+
"Gemma 可以用于问答、对话、文本生成等任务。",
|
| 18 |
+
"Gemma 基于 Transformer 架构。",
|
| 19 |
+
"Gemma 支持多种语言。"
|
| 20 |
]
|
| 21 |
|
| 22 |
+
# 3. 构建向量数据库 (如果需要,仅构建一次)
|
| 23 |
+
try:
|
| 24 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
| 25 |
+
db = FAISS.from_texts(knowledge_base, embeddings)
|
| 26 |
+
except Exception as e:
|
| 27 |
+
st.error(f"向量数据库构建失败:{e}")
|
| 28 |
+
st.stop()
|
| 29 |
|
| 30 |
# 4. 问答函数
|
| 31 |
def answer_question(question):
|
| 32 |
+
try:
|
| 33 |
+
question_embedding = embeddings.embed_query(question)
|
| 34 |
+
docs_and_scores = db.similarity_search_with_score(question_embedding)
|
| 35 |
+
context = "\n".join([doc.page_content for doc, _ in docs_and_scores])
|
| 36 |
+
prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
|
| 37 |
+
answer = llm(prompt)
|
| 38 |
+
return answer
|
| 39 |
+
except Exception as e:
|
| 40 |
+
st.error(f"问答过程出错:{e}")
|
| 41 |
+
return "An error occurred during the answering process."
|
| 42 |
|
| 43 |
+
# 5. Streamlit 界面
|
| 44 |
+
st.title("Gemma 知识库问答系统")
|
| 45 |
+
|
| 46 |
+
question = st.text_area("请输入问题", height=100)
|
| 47 |
+
|
| 48 |
+
if st.button("提交"):
|
| 49 |
+
if not question:
|
| 50 |
+
st.warning("请输入问题!")
|
| 51 |
+
else:
|
| 52 |
+
with st.spinner("正在查询..."):
|
| 53 |
+
answer = answer_question(question)
|
| 54 |
+
st.write("答案:")
|
| 55 |
+
st.write(answer)
|