Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from
|
| 3 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
| 4 |
from langchain_community.vectorstores import FAISS
|
| 5 |
|
|
@@ -24,12 +24,7 @@ except Exception as e:
|
|
| 24 |
def answer_question(repo_id, temperature, max_length, question):
|
| 25 |
# 4. 初始化 Gemma 模型
|
| 26 |
try:
|
| 27 |
-
llm =
|
| 28 |
-
repo_id=repo_id,
|
| 29 |
-
temperature=temperature,
|
| 30 |
-
max_length=max_length,
|
| 31 |
-
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
| 32 |
-
)
|
| 33 |
except Exception as e:
|
| 34 |
st.error(f"Gemma 模型加载失败:{e}")
|
| 35 |
st.stop()
|
|
@@ -47,7 +42,7 @@ def answer_question(repo_id, temperature, max_length, question):
|
|
| 47 |
prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
|
| 48 |
print('prompt: ' + prompt)
|
| 49 |
|
| 50 |
-
answer = llm
|
| 51 |
return answer
|
| 52 |
except Exception as e:
|
| 53 |
st.error(f"问答过程出错:{e}")
|
|
@@ -56,7 +51,7 @@ def answer_question(repo_id, temperature, max_length, question):
|
|
| 56 |
# 6. Streamlit 界面
|
| 57 |
st.title("Gemma 知识库问答系统")
|
| 58 |
|
| 59 |
-
gemma = st.selectbox("repo-id", ("google/gemma-
|
| 60 |
temperature = st.number_input("temperature", value=1.0)
|
| 61 |
max_length = st.number_input("max_length", value=1024)
|
| 62 |
question = st.text_area("请输入问题", "Gemma 有哪些特点?")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from langchain_community.llms import HuggingFaceHub
|
| 3 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
| 4 |
from langchain_community.vectorstores import FAISS
|
| 5 |
|
|
|
|
| 24 |
def answer_question(repo_id, temperature, max_length, question):
|
| 25 |
# 4. 初始化 Gemma 模型
|
| 26 |
try:
|
| 27 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": temperature, "max_length": max_length})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
except Exception as e:
|
| 29 |
st.error(f"Gemma 模型加载失败:{e}")
|
| 30 |
st.stop()
|
|
|
|
| 42 |
prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
|
| 43 |
print('prompt: ' + prompt)
|
| 44 |
|
| 45 |
+
answer = llm(prompt)
|
| 46 |
return answer
|
| 47 |
except Exception as e:
|
| 48 |
st.error(f"问答过程出错:{e}")
|
|
|
|
| 51 |
# 6. Streamlit 界面
|
| 52 |
st.title("Gemma 知识库问答系统")
|
| 53 |
|
| 54 |
+
gemma = st.selectbox("repo-id", ("google/gemma-2-9b-it", "google/gemma-2-2b-it", "google/recurrentgemma-2b-it"), 2)
|
| 55 |
temperature = st.number_input("temperature", value=1.0)
|
| 56 |
max_length = st.number_input("max_length", value=1024)
|
| 57 |
question = st.text_area("请输入问题", "Gemma 有哪些特点?")
|