Spaces:
Runtime error
Runtime error
| from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
| import torch | |
| from resources import set_start, audit_elapsedtime | |
| #Speech to text transcription model | |
| def init_model_trans (): | |
| print("Initiating transcription model...") | |
| start = set_start() | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| model_id = "openai/whisper-large-v3" | |
| model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
| ) | |
| model.to(device) | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=model, | |
| tokenizer=processor.tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| max_new_tokens=128, | |
| chunk_length_s=30, | |
| batch_size=16, | |
| return_timestamps=True, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| ) | |
| print(f'Init model successful') | |
| audit_elapsedtime(function="Init transc model", start=start) | |
| return pipe | |
| def transcribe (audio_sample: bytes, pipe) -> str: | |
| print("Initiating transcription...") | |
| start = set_start() | |
| # dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
| # sample = dataset[0]["audio"] | |
| #result = pipe(audio_sample) | |
| result = pipe(audio_sample) | |
| audit_elapsedtime(function="Transcription", start=start) | |
| print("transcription result",result) | |
| #st.write('trancription: ', result["text"]) | |
| return result["text"] | |
| # def translate (audio_sample: bytes, pipe) -> str: | |
| # print("Initiating Translation...") | |
| # start = set_start() | |
| # # dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
| # # sample = dataset[0]["audio"] | |
| # #result = pipe(audio_sample) | |
| # result = pipe(audio_sample, generate_kwargs={"task": "translate"}) | |
| # audit_elapsedtime(function="Translation", start=start) | |
| # print("Translation result",result) | |
| # #st.write('trancription: ', result["text"]) | |
| # return result["text"] |