Spaces:
Runtime error
Runtime error
Zeimoto
commited on
Commit
·
071265e
1
Parent(s):
9d881ca
models split into files
Browse files
app.py
CHANGED
|
@@ -1,104 +1,31 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from st_audiorec import st_audiorec
|
| 3 |
|
| 4 |
-
from
|
| 5 |
-
|
| 6 |
-
import
|
| 7 |
-
from gliner import GLiNER
|
| 8 |
-
|
| 9 |
-
from resources import Lead_Labels, entity_labels, set_start, audit_elapsedtime
|
| 10 |
-
|
| 11 |
|
| 12 |
def main ():
|
| 13 |
print("------------------------------")
|
| 14 |
print(f"Running main")
|
| 15 |
|
| 16 |
-
|
| 17 |
ner = init_model_ner() #async
|
| 18 |
|
| 19 |
-
labels = entity_labels
|
| 20 |
-
|
| 21 |
-
# text = "I have a proposal from cgd where they want one outsystems junior developers and one senior for an estimate of three hundred euros a day, for six months."
|
| 22 |
-
# print(f"get entities from sample text: {text}")
|
| 23 |
-
# get_entity_labels(model=ner, text=text, labels=labels)
|
| 24 |
-
|
| 25 |
print("Rendering UI...")
|
| 26 |
start_render = set_start()
|
| 27 |
wav_audio_data = st_audiorec()
|
| 28 |
audit_elapsedtime(function="Rendering UI", start=start_render)
|
| 29 |
|
| 30 |
-
if wav_audio_data is not None and
|
| 31 |
print("Loading data...")
|
| 32 |
start_loading = set_start()
|
| 33 |
st.audio(wav_audio_data, format='audio/wav')
|
| 34 |
-
text = transcribe(wav_audio_data,
|
| 35 |
-
if text is not None:
|
| 36 |
-
get_entity_labels(labels=labels, model=ner, text=text)
|
| 37 |
-
|
| 38 |
-
audit_elapsedtime(function="Loading data", start=start_loading)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def init_model_trans ():
|
| 42 |
-
print("Initiating transcription model...")
|
| 43 |
-
start = set_start()
|
| 44 |
-
|
| 45 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 46 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 52 |
-
)
|
| 53 |
-
model.to(device)
|
| 54 |
-
|
| 55 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 56 |
-
|
| 57 |
-
pipe = pipeline(
|
| 58 |
-
"automatic-speech-recognition",
|
| 59 |
-
model=model,
|
| 60 |
-
tokenizer=processor.tokenizer,
|
| 61 |
-
feature_extractor=processor.feature_extractor,
|
| 62 |
-
max_new_tokens=128,
|
| 63 |
-
chunk_length_s=30,
|
| 64 |
-
batch_size=16,
|
| 65 |
-
return_timestamps=True,
|
| 66 |
-
torch_dtype=torch_dtype,
|
| 67 |
-
device=device,
|
| 68 |
-
)
|
| 69 |
-
print(f'Init model successful')
|
| 70 |
-
audit_elapsedtime(function="Initiating transcription model", start=start)
|
| 71 |
-
return pipe
|
| 72 |
-
|
| 73 |
-
def init_model_ner():
|
| 74 |
-
print("Initiating NER model...")
|
| 75 |
-
start = set_start()
|
| 76 |
-
model = GLiNER.from_pretrained("urchade/gliner_multi")
|
| 77 |
-
audit_elapsedtime(function="Initiating NER model", start=start)
|
| 78 |
-
return model
|
| 79 |
-
|
| 80 |
-
def transcribe (audio_sample: bytes, pipe) -> str:
|
| 81 |
-
print("Initiating transcription...")
|
| 82 |
-
start = set_start()
|
| 83 |
-
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
| 84 |
-
# sample = dataset[0]["audio"]
|
| 85 |
-
result = pipe(audio_sample)
|
| 86 |
-
audit_elapsedtime(function="Transcription", start=start)
|
| 87 |
-
print(result)
|
| 88 |
-
|
| 89 |
-
st.write('trancription: ', result["text"])
|
| 90 |
-
return result["text"]
|
| 91 |
-
|
| 92 |
-
def get_entity_labels(model: GLiNER, text: str, labels: list): #-> Lead_labels:
|
| 93 |
-
print("Initiating entity recognition...")
|
| 94 |
-
start = set_start()
|
| 95 |
-
entities = model.predict_entities(text, labels)
|
| 96 |
-
audit_elapsedtime(function="Retreiving entity labels from text", start=start)
|
| 97 |
-
|
| 98 |
-
for entity in entities:
|
| 99 |
-
print(entity["text"], "=>", entity["label"])
|
| 100 |
-
st.write('Entities: ', entities)
|
| 101 |
-
# return Lead_Labels()
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
print("IN __name__")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from st_audiorec import st_audiorec
|
| 3 |
|
| 4 |
+
from ner import init_model_ner, get_entity_labels
|
| 5 |
+
from speech2text import init_model_trans, transcribe
|
| 6 |
+
from resources import audit_elapsedtime, set_start
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def main ():
|
| 9 |
print("------------------------------")
|
| 10 |
print(f"Running main")
|
| 11 |
|
| 12 |
+
s2t = init_model_trans()
|
| 13 |
ner = init_model_ner() #async
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
print("Rendering UI...")
|
| 16 |
start_render = set_start()
|
| 17 |
wav_audio_data = st_audiorec()
|
| 18 |
audit_elapsedtime(function="Rendering UI", start=start_render)
|
| 19 |
|
| 20 |
+
if wav_audio_data is not None and s2t is not None:
|
| 21 |
print("Loading data...")
|
| 22 |
start_loading = set_start()
|
| 23 |
st.audio(wav_audio_data, format='audio/wav')
|
| 24 |
+
text = transcribe(wav_audio_data, s2t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
if text is not None and ner is not None:
|
| 27 |
+
st.write('Entities: ', get_entity_labels(model=ner, text=text))
|
| 28 |
+
audit_elapsedtime(function="Loading data", start=start_loading)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
if __name__ == "__main__":
|
| 31 |
print("IN __name__")
|