Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Script based on: | |
| Wang, Xueliang, Honge Ren, and Achuan Wang. | |
| "Smish: A Novel Activation Function for Deep Learning Methods. | |
| " Electronics 11.4 (2022): 540. | |
| smish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + sigmoid(x))) | |
| """ | |
| # import pytorch | |
| # import activation functions | |
| from torch import nn | |
| from .Fsmish import smish | |
| class Smish(nn.Module): | |
| """ | |
| Applies the mish function element-wise: | |
| mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x))) | |
| Shape: | |
| - Input: (N, *) where * means, any number of additional | |
| dimensions | |
| - Output: (N, *), same shape as the input | |
| Examples: | |
| >>> m = Mish() | |
| >>> input = torch.randn(2) | |
| >>> output = m(input) | |
| Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html | |
| """ | |
| def __init__(self): | |
| """ | |
| Init method. | |
| """ | |
| super().__init__() | |
| def forward(self, input): | |
| """ | |
| Forward pass of the function. | |
| """ | |
| return smish(input) | |