File size: 5,775 Bytes
f1b46ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, BitsAndBytesConfig
import os
import time

# Disable wandb
os.environ["WANDB_DISABLED"] = "true"

# Global variables
model = None
tokenizer = None
training_status = "Not started"

def load_model():
    global model, tokenizer
    try:
        # Configure 4-bit quantization for memory efficiency
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
        )
        
        # Load model and tokenizer
        model_name = "LLM360/K2-Think"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            quantization_config=quantization_config,
            device_map="auto"
        )
        
        # Set padding token
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            
        return "Model loaded successfully!"
    except Exception as e:
        return f"Error loading model: {str(e)}"

def prepare_data():
    try:
        # Load a sample dataset (you can replace this with your own)
        dataset = load_dataset("imdb")
        
        # Preprocessing function
        def preprocess_function(examples):
            # Format the text for instruction tuning
            texts = []
            for text, label in zip(examples["text"], examples["label"]):
                sentiment = "positive" if label == 1 else "negative"
                texts.append(f"Analyze the sentiment of this movie review: {text}\nSentiment: {sentiment}")
            
            # Tokenize
            tokenized = tokenizer(texts, truncation=True, padding=True, max_length=256)
            
            # Create labels
            tokenized["labels"] = tokenized["input_ids"].copy()
            
            return tokenized
        
        # Apply preprocessing
        tokenized_dataset = dataset.map(
            preprocess_function, 
            batched=True, 
            remove_columns=dataset["train"].column_names
        )
        
        # Use small subset for demo
        train_dataset = tokenized_dataset["train"].shuffle().select(range(50))
        
        return train_dataset, "Data prepared successfully!"
    except Exception as e:
        return None, f"Error preparing data: {str(e)}"

def train_model():
    global model, tokenizer, training_status
    try:
        training_status = "Starting training..."
        yield training_status
        
        # Prepare data
        train_dataset, status = prepare_data()
        if train_dataset is None:
            training_status = status
            yield training_status
            return
        
        training_status = status
        yield training_status
        
        # Set up training arguments
        training_args = TrainingArguments(
            output_dir="./k2-think-finetuned",
            per_device_train_batch_size=1,
            gradient_accumulation_steps=4,
            num_train_epochs=1,
            learning_rate=2e-5,
            fp16=True,
            save_strategy="no",
            logging_steps=5,
        )
        
        training_status = "Training configuration set up..."
        yield training_status
        
        # Create trainer
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
        )
        
        training_status = "Starting training process..."
        yield training_status
        
        # Start training
        trainer.train()
        
        training_status = "Training completed! Saving model..."
        yield training_status
        
        # Save model
        model.save_pretrained("./k2-think-finetuned")
        tokenizer.save_pretrained("./k2-think-finetuned")
        
        training_status = "Model saved successfully! Ready for inference."
        yield training_status
        
    except Exception as e:
        training_status = f"Error during training: {str(e)}"
        yield training_status

def generate_text(prompt):
    if model is None or tokenizer is None:
        return "Please load the model first."
    
    try:
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        outputs = model.generate(
            inputs.input_ids,
            max_length=200,
            num_return_sequences=1,
            temperature=0.7,
        )
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    except Exception as e:
        return f"Error generating text: {str(e)}"

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# K2-Think Model Training")
    
    with gr.Tab("Training"):
        gr.Markdown("## Fine-tune K2-Think Model")
        
        with gr.Row():
            load_btn = gr.Button("Load Model")
            train_btn = gr.Button("Start Training")
        
        status_output = gr.Textbox(label="Training Status", value=training_status)
        
        load_btn.click(load_model, outputs=status_output)
        train_btn.click(train_model, outputs=status_output)
    
    with gr.Tab("Inference"):
        gr.Markdown("## Test Your Fine-tuned Model")
        
        with gr.Row():
            prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Analyze the sentiment of this movie review: This movie was amazing!")
            generate_btn = gr.Button("Generate")
        
        output_text = gr.Textbox(label="Generated Text")
        
        generate_btn.click(generate_text, inputs=prompt_input, outputs=output_text)

demo.launch()