Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import math
|
| 5 |
+
from typing import List
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import torch.utils.checkpoint
|
| 13 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 14 |
+
|
| 15 |
+
from my_utils.testing_utils import parse_args_paired_testing
|
| 16 |
+
from de_net import DEResNet
|
| 17 |
+
from s3diff_tile import S3Diff
|
| 18 |
+
from torchvision import transforms
|
| 19 |
+
from utils.wavelet_color import wavelet_color_fix, adain_color_fix
|
| 20 |
+
|
| 21 |
+
tensor_transforms = transforms.Compose([
|
| 22 |
+
transforms.ToTensor(),
|
| 23 |
+
])
|
| 24 |
+
|
| 25 |
+
args = parse_args_paired_testing()
|
| 26 |
+
|
| 27 |
+
# Load scheduler, tokenizer and models.
|
| 28 |
+
pretrained_model_path = 'checkpoint-path/s3diff.pkl'
|
| 29 |
+
t2i_path = 'sd-turbo-path'
|
| 30 |
+
de_net_path = 'assets/mm-realsr/de_net.pth'
|
| 31 |
+
|
| 32 |
+
# initialize net_sr
|
| 33 |
+
net_sr = S3Diff(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae, sd_path=t2i_path, pretrained_path=pretrained_model_path, args=args)
|
| 34 |
+
net_sr.set_eval()
|
| 35 |
+
|
| 36 |
+
# initalize degradation estimation network
|
| 37 |
+
net_de = DEResNet(num_in_ch=3, num_degradation=2)
|
| 38 |
+
net_de.load_model(de_net_path)
|
| 39 |
+
net_de = net_de.cuda()
|
| 40 |
+
net_de.eval()
|
| 41 |
+
|
| 42 |
+
if args.enable_xformers_memory_efficient_attention:
|
| 43 |
+
if is_xformers_available():
|
| 44 |
+
net_sr.unet.enable_xformers_memory_efficient_attention()
|
| 45 |
+
else:
|
| 46 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
| 47 |
+
|
| 48 |
+
if args.gradient_checkpointing:
|
| 49 |
+
net_sr.unet.enable_gradient_checkpointing()
|
| 50 |
+
|
| 51 |
+
weight_dtype = torch.float32
|
| 52 |
+
device = "cuda"
|
| 53 |
+
|
| 54 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
| 55 |
+
net_sr.to(device, dtype=weight_dtype)
|
| 56 |
+
net_de.to(device, dtype=weight_dtype)
|
| 57 |
+
|
| 58 |
+
@torch.no_grad()
|
| 59 |
+
def process(
|
| 60 |
+
input_image: Image.Image,
|
| 61 |
+
scale_factor: float,
|
| 62 |
+
cfg_scale: float,
|
| 63 |
+
latent_tiled_size: int,
|
| 64 |
+
latent_tiled_overlap: int,
|
| 65 |
+
align_method: str,
|
| 66 |
+
) -> List[np.ndarray]:
|
| 67 |
+
|
| 68 |
+
# positive_prompt = ""
|
| 69 |
+
# negative_prompt = ""
|
| 70 |
+
|
| 71 |
+
net_sr._set_latent_tile(latent_tiled_size = latent_tiled_size, latent_tiled_overlap = latent_tiled_overlap)
|
| 72 |
+
|
| 73 |
+
im_lr = tensor_transforms(input_image).unsqueeze(0).to(device)
|
| 74 |
+
ori_h, ori_w = im_lr.shape[2:]
|
| 75 |
+
im_lr_resize = F.interpolate(
|
| 76 |
+
im_lr,
|
| 77 |
+
size=(int(ori_h * scale_factor),
|
| 78 |
+
int(ori_w * scale_factor)),
|
| 79 |
+
mode='bicubic',
|
| 80 |
+
)
|
| 81 |
+
im_lr_resize = im_lr_resize.contiguous()
|
| 82 |
+
im_lr_resize_norm = im_lr_resize * 2 - 1.0
|
| 83 |
+
im_lr_resize_norm = torch.clamp(im_lr_resize_norm, -1.0, 1.0)
|
| 84 |
+
resize_h, resize_w = im_lr_resize_norm.shape[2:]
|
| 85 |
+
|
| 86 |
+
pad_h = (math.ceil(resize_h / 64)) * 64 - resize_h
|
| 87 |
+
pad_w = (math.ceil(resize_w / 64)) * 64 - resize_w
|
| 88 |
+
im_lr_resize_norm = F.pad(im_lr_resize_norm, pad=(0, pad_w, 0, pad_h), mode='reflect')
|
| 89 |
+
|
| 90 |
+
try:
|
| 91 |
+
with torch.autocast("cuda"):
|
| 92 |
+
deg_score = net_de(im_lr)
|
| 93 |
+
|
| 94 |
+
pos_tag_prompt = [args.pos_prompt]
|
| 95 |
+
neg_tag_prompt = [args.neg_prompt]
|
| 96 |
+
|
| 97 |
+
x_tgt_pred = net_sr(im_lr_resize_norm, deg_score, pos_prompt=pos_tag_prompt, neg_prompt=neg_tag_prompt)
|
| 98 |
+
x_tgt_pred = x_tgt_pred[:, :, :resize_h, :resize_w]
|
| 99 |
+
out_img = (x_tgt_pred * 0.5 + 0.5).cpu().detach()
|
| 100 |
+
|
| 101 |
+
output_pil = transforms.ToPILImage()(out_img[0])
|
| 102 |
+
|
| 103 |
+
if align_method == 'no fix':
|
| 104 |
+
image = output_pil
|
| 105 |
+
else:
|
| 106 |
+
im_lr_resize = transforms.ToPILImage()(im_lr_resize[0])
|
| 107 |
+
if align_method == 'wavelet':
|
| 108 |
+
image = wavelet_color_fix(output_pil, im_lr_resize)
|
| 109 |
+
elif align_method == 'adain':
|
| 110 |
+
image = adain_color_fix(output_pil, im_lr_resize)
|
| 111 |
+
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(e)
|
| 114 |
+
image = Image.new(mode="RGB", size=(512, 512))
|
| 115 |
+
|
| 116 |
+
return image
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
#
|
| 120 |
+
MARKDOWN = \
|
| 121 |
+
"""
|
| 122 |
+
## Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors
|
| 123 |
+
|
| 124 |
+
[GitHub](https://github.com/ArcticHare105/S3Diff) | [Paper](https://arxiv.org/abs/2409.17058)
|
| 125 |
+
|
| 126 |
+
If S3Diff is helpful for you, please help star the GitHub Repo. Thanks!
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
block = gr.Blocks().queue()
|
| 130 |
+
with block:
|
| 131 |
+
with gr.Row():
|
| 132 |
+
gr.Markdown(MARKDOWN)
|
| 133 |
+
with gr.Row():
|
| 134 |
+
with gr.Column():
|
| 135 |
+
input_image = gr.Image(source="upload", type="pil")
|
| 136 |
+
run_button = gr.Button(label="Run")
|
| 137 |
+
with gr.Accordion("Options", open=True):
|
| 138 |
+
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set a value larger than 1 to enable it!)", minimum=1.0, maximum=1.1, value=1.07, step=0.01)
|
| 139 |
+
scale_factor = gr.Number(label="SR Scale", value=4)
|
| 140 |
+
latent_tiled_size = gr.Slider(label="Tile Size", minimum=64, maximum=160, value=96, step=1)
|
| 141 |
+
latent_tiled_overlap = gr.Slider(label="Tile Overlap", minimum=16, maximum=48, value=32, step=1)
|
| 142 |
+
align_method = gr.Dropdown(label="Color Correction", choices=["wavelet", "adain", "no fix"], value="wavelet")
|
| 143 |
+
with gr.Column():
|
| 144 |
+
result_image = gr.Image(label="Output", show_label=False, elem_id="result_image", source="canvas", width="100%", height="auto")
|
| 145 |
+
|
| 146 |
+
inputs = [
|
| 147 |
+
input_image,
|
| 148 |
+
scale_factor,
|
| 149 |
+
cfg_scale,
|
| 150 |
+
latent_tiled_size,
|
| 151 |
+
latent_tiled_overlap,
|
| 152 |
+
align_method
|
| 153 |
+
]
|
| 154 |
+
run_button.click(fn=process, inputs=inputs, outputs=[result_image])
|
| 155 |
+
|
| 156 |
+
block.launch()
|
| 157 |
+
|