Spaces:
Running
on
Zero
Running
on
Zero
| # Hugging Face's logo | |
| # Hugging Face | |
| # Models | |
| # Datasets | |
| # Spaces | |
| # Community | |
| # Docs | |
| # Enterprise | |
| # Pricing | |
| # Dream-org | |
| # / | |
| # Dream-v0-Instruct-7B | |
| # like | |
| # 94 | |
| # Follow | |
| # Dream Org | |
| # 81 | |
| # Feature Extraction | |
| # Transformers | |
| # Safetensors | |
| # Dream | |
| # custom_code | |
| # License: | |
| # apache-2.0 | |
| # Model card | |
| # Files and versions | |
| # Community | |
| # 2 | |
| # Dream-v0-Instruct-7B | |
| # / | |
| # modeling_dream.py | |
| # jiacheng-ye's picture | |
| # jiacheng-ye | |
| # Upload model | |
| # 373705a | |
| # verified | |
| # about 2 months ago | |
| # raw | |
| # Copy download link | |
| # history | |
| # blame | |
| # contribute | |
| # delete | |
| # 36.8 kB | |
| # # coding=utf-8 | |
| # Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
| # and OPT and Qwen implementations in this library. It has been modified from its | |
| # original forms to accommodate minor architectural differences compared | |
| # to GPT-NeoX and OPT and Qwen used by the Meta AI and Qwen team that trained the model. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch Dream model.""" | |
| from transformers import Qwen2Model | |
| from torch.nn.attention.flex_attention import flex_attention | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import os | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from transformers.activations import ACT2FN | |
| from transformers.cache_utils import Cache, DynamicCache | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| MaskedLMOutput, | |
| BaseModelOutputWithPast, | |
| CausalLMOutputWithPast | |
| ) | |
| from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import ( | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| is_flash_attn_2_available, | |
| is_flash_attn_greater_or_equal_2_10, | |
| logging, | |
| ) | |
| from transformers import PretrainedConfig | |
| from model_cache.dream.configuration_dream import DreamConfig | |
| from model_cache.dream.generation_utils import DreamGenerationMixin, DreamGenerationConfig | |
| if is_flash_attn_2_available(): | |
| from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
| logger = logging.get_logger(__name__) | |
| from transformers import Qwen2ForCausalLM | |
| _CHECKPOINT_FOR_DOC = "Dream-7B" | |
| _CONFIG_FOR_DOC = "DreamConfig" | |
| # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Dream | |
| class DreamRMSNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-6): | |
| """ | |
| DreamRMSNorm is equivalent to T5LayerNorm | |
| """ | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| hidden_states = hidden_states.to(torch.float32) | |
| variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
| return self.weight * hidden_states.to(input_dtype) | |
| def extra_repr(self): | |
| return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
| # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Dream | |
| class DreamRotaryEmbedding(nn.Module): | |
| def __init__( | |
| self, | |
| dim=None, | |
| max_position_embeddings=2048, | |
| base=10000, | |
| device=None, | |
| scaling_factor=1.0, | |
| rope_type="default", | |
| config: Optional[DreamConfig] = None, | |
| ): | |
| super().__init__() | |
| # TODO (joao): remove the `if` below, only used for BC | |
| self.rope_kwargs = {} | |
| if config is None: | |
| logger.warning_once( | |
| "`DreamRotaryEmbedding` can now be fully parameterized by passing the model config through the " | |
| "`config` argument. All other arguments will be removed in v4.46" | |
| ) | |
| self.rope_kwargs = { | |
| "rope_type": rope_type, | |
| "factor": scaling_factor, | |
| "dim": dim, | |
| "base": base, | |
| "max_position_embeddings": max_position_embeddings, | |
| } | |
| self.rope_type = rope_type | |
| self.max_seq_len_cached = max_position_embeddings | |
| self.original_max_seq_len = max_position_embeddings | |
| else: | |
| # BC: "rope_type" was originally "type" | |
| if config.rope_scaling is not None: | |
| self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | |
| else: | |
| self.rope_type = "default" | |
| self.max_seq_len_cached = config.max_position_embeddings | |
| self.original_max_seq_len = config.max_position_embeddings | |
| self.config = config | |
| self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | |
| inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| self.original_inv_freq = self.inv_freq | |
| def reset_parameters(self): | |
| inv_freq, self.attention_scaling = self.rope_init_fn(self.config, self.inv_freq.device, **self.rope_kwargs) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| self.original_inv_freq = self.inv_freq | |
| def _dynamic_frequency_update(self, position_ids, device): | |
| """ | |
| dynamic RoPE layers should recompute `inv_freq` in the following situations: | |
| 1 - growing beyond the cached sequence length (allow scaling) | |
| 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) | |
| """ | |
| seq_len = torch.max(position_ids) + 1 | |
| if seq_len > self.max_seq_len_cached: # growth | |
| inv_freq, self.attention_scaling = self.rope_init_fn( | |
| self.config, device, seq_len=seq_len, **self.rope_kwargs | |
| ) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation | |
| self.max_seq_len_cached = seq_len | |
| if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset | |
| self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) | |
| self.max_seq_len_cached = self.original_max_seq_len | |
| def forward(self, x, position_ids): | |
| if "dynamic" in self.rope_type: | |
| self._dynamic_frequency_update(position_ids, device=x.device) | |
| # Core RoPE block | |
| inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
| position_ids_expanded = position_ids[:, None, :].float() | |
| # Force float32 (see https://github.com/huggingface/transformers/pull/29285) | |
| device_type = x.device.type | |
| device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
| with torch.autocast(device_type=device_type, enabled=False): | |
| freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| cos = emb.cos() | |
| sin = emb.sin() | |
| # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention | |
| cos = cos * self.attention_scaling | |
| sin = sin * self.attention_scaling | |
| return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
| # Copied from transformers.models.llama.modeling_llama.rotate_half | |
| def rotate_half(x): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb | |
| def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
| """Applies Rotary Position Embedding to the query and key tensors. | |
| Args: | |
| q (`torch.Tensor`): The query tensor. | |
| k (`torch.Tensor`): The key tensor. | |
| cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
| sin (`torch.Tensor`): The sine part of the rotary embedding. | |
| position_ids (`torch.Tensor`, *optional*): | |
| Deprecated and unused. | |
| unsqueeze_dim (`int`, *optional*, defaults to 1): | |
| The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
| sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
| that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
| k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
| cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
| the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
| Returns: | |
| `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
| """ | |
| cos = cos.unsqueeze(unsqueeze_dim) | |
| sin = sin.unsqueeze(unsqueeze_dim) | |
| q_embed = (q * cos) + (rotate_half(q) * sin) | |
| k_embed = (k * cos) + (rotate_half(k) * sin) | |
| return q_embed, k_embed | |
| # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Dream | |
| class DreamMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.intermediate_size = config.intermediate_size | |
| self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| def forward(self, hidden_state): | |
| return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) | |
| # Copied from transformers.models.llama.modeling_llama.repeat_kv | |
| def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| """ | |
| This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
| num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
| """ | |
| batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
| if n_rep == 1: | |
| return hidden_states | |
| hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
| return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
| class DreamAttention(nn.Module): | |
| """ | |
| Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | |
| and "Generating Long Sequences with Sparse Transformers". | |
| """ | |
| def __init__(self, config: DreamConfig, layer_idx: Optional[int] = None): | |
| super().__init__() | |
| self.config = config | |
| self.layer_idx = layer_idx | |
| if layer_idx is None: | |
| logger.warning_once( | |
| f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
| "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
| "when creating this class." | |
| ) | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.rope_theta = config.rope_theta | |
| self.is_causal = False | |
| self.attention_dropout = config.attention_dropout | |
| if (self.head_dim * self.num_heads) != self.hidden_size: | |
| raise ValueError( | |
| f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
| f" and `num_heads`: {self.num_heads})." | |
| ) | |
| self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
| self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
| self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
| self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
| self.rotary_emb = DreamRotaryEmbedding(config=self.config) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| logger.warning_once( | |
| "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| "removed and `position_embeddings` will be mandatory." | |
| ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # repeat k/v heads if n_kv_heads < n_heads | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| if attention_mask is not None: # no matter the length, we just slice it | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| attn_weights = attn_weights + causal_mask | |
| # upcast attention to fp32 | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
| attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class DreamSdpaAttention(DreamAttention): | |
| """ | |
| Dream attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
| `DreamAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
| SDPA API. | |
| """ | |
| # Adapted from DreamAttention.forward | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| update_kvcache: torch.int32 = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if output_attentions: | |
| # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
| logger.warning_once( | |
| "DreamModel is using DreamSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
| 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
| ) | |
| return super().forward( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| logger.warning_once( | |
| "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| "removed and `position_embeddings` will be mandatory." | |
| ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| # causal_mask = attention_mask | |
| # if attention_mask is not None: # no matter the length, we just slice it | |
| # causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
| # Reference: https://github.com/pytorch/pytorch/issues/112577. | |
| if query_states.device.type == "cuda" and attention_mask is not None: | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
| # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
| # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
| # is_causal = True if causal_mask is None and q_len > 1 else False | |
| attn_output = torch.nn.functional.scaled_dot_product_attention( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask=attention_mask if attention_mask is not None else None, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=False, # hard coded | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| class DreamFlexAttention(DreamAttention): | |
| """ | |
| Dream attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
| `DreamAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
| SDPA API. | |
| """ | |
| # Adapted from DreamAttention.forward | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| update_kvcache: torch.int32 = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if output_attentions: | |
| # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
| logger.warning_once( | |
| "DreamModel is using DreamSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
| 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
| ) | |
| return super().forward( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| # print("hidden_states",hidden_states) | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| logger.warning_once( | |
| "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| "removed and `position_embeddings` will be mandatory." | |
| ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| # print(query_states.shape,key_states.shape,cos.shape,sin.shape) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| # print("k,v",key_states.shape,value_states.shape,past_key_value) | |
| # print(cos.shape,sin.shape,cache_position.shape) | |
| if past_key_value is not None: | |
| if update_kvcache == 0: | |
| past_key_states, past_value_states = past_key_value[self.layer_idx] | |
| key_states=torch.cat([past_key_states, key_states], dim=2) | |
| value_states=torch.cat([past_value_states, value_states], dim=2) | |
| # Specific to RoPE models | |
| else: | |
| cache_kwargs = {"sin": sin[:,:update_kvcache,:], "cos": cos[:,:update_kvcache,:], "cache_position": cache_position[:update_kvcache]} | |
| # print("update_kvcache",update_kvcache) | |
| new_key_states, new_value_states = past_key_value.update(key_states[:,:,:update_kvcache, :], value_states[:,:,:update_kvcache, : ], self.layer_idx, cache_kwargs) | |
| # print("new_kv",new_key_states.shape,new_value_states.shape) | |
| # print("k,v",new_key_states.shape,new_value_states.shape) | |
| key_states = torch.cat([new_key_states,key_states[:,:,update_kvcache:,:]], dim=2) | |
| value_states = torch.cat([new_value_states,value_states[:,:,update_kvcache:,:]], dim=2) | |
| # print("k,v",key_states.shape,value_states.shape) | |
| # print(key_states.shape,value_states.shape) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| # causal_mask = attention_mask | |
| if attention_mask is not None: # no matter the length, we just slice it | |
| atte_mask = attention_mask[:,:, :, : key_states.shape[-2]].clone() | |
| # print(update_kvcache,attention_mask.shape) | |
| # if attention_mask.shape[3]>86+32: | |
| # if attention_mask.shape[-1]!=attention_mask.shape[-2]: | |
| # atte_mask[:,:,:update_kvcache,-update_kvcache:]=-torch.inf | |
| # if update_kvcache > 0: | |
| # print("attention_mask中出现过的值",atte_mask.unique()) | |
| # print('tTTTTTTTTT') | |
| # print("-"*20) | |
| # print("attention_mask",attention_mask,update_kvcache) | |
| # print(attention_mask) | |
| # exit() | |
| # print(attention_mask[0,0,:,:],attention_mask[0,0,:,:].shape) | |
| # exit(0) | |
| # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
| # Reference: https://github.com/pytorch/pytorch/issues/112577. | |
| if query_states.device.type == "cuda" and attention_mask is not None: | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
| # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
| # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
| # is_causal = True if causal_mask is None and q_len > 1 else False | |
| # print(query_states.shape[2], key_states.shape[2]) | |
| # attention_mask=attention_mask[:,:, :key_states.shape[2], :key_states.shape[2]] if attention_mask is not None else None | |
| # attn_output = flex_attention(query_states, key_states, value_states, block_mask= attention_mask ), | |
| # print(query_states.shape, key_states.shape, value_states.shape, attention_mask.shape if attention_mask is not None else None) | |
| # print(query_states.dtype,attention_mask.dtype if attention_mask is not None else None) | |
| # print(self.training) | |
| # print("key_states",key_states[:,:,:84,:]) | |
| # torch.save(key_states,"key_states1.pt") | |
| # torch.save(value_states,"value_states1.pt") | |
| # torch.save(value_states,"query_state1.pt") | |
| # torch.save(attention_mask,"attention_mask1.pt") | |
| # print(atte_mask.shape) | |
| attn_output = torch.nn.functional.scaled_dot_product_attention( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask=atte_mask if attention_mask is not None else None, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=False, # hard coded | |
| ) | |
| # print("attn_output",attn_output[:,:,:84,:],attn_output.shape) | |
| # print(atte_mask[:,:,:84,:84],attenti_mask.shape) | |
| # exit() | |
| # if self.layer_idx==2: | |
| # torch.save(attn_output,"attn_output2.pt") | |
| # exit() | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| class DreamDecoderLayer(nn.Module): | |
| def __init__(self, config: DreamConfig, layer_idx: int): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| if config.sliding_window and config._attn_implementation != "flash_attention_2": | |
| logger.warning_once( | |
| f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " | |
| "unexpected results may be encountered." | |
| ) | |
| # self.self_attn = Dream_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | |
| self.self_attn = DreamFlexAttention(config, layer_idx) | |
| self.mlp = DreamMLP(config) | |
| self.input_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| update_kvcache: torch.int32 = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| **kwargs, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
| `(batch, sequence_length)` where padding elements are indicated by 0. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
| Indices depicting the position of the input sequence tokens in the sequence. | |
| position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | |
| Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | |
| with `head_dim` being the embedding dimension of each attention head. | |
| kwargs (`dict`, *optional*): | |
| Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | |
| into the model | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| update_kvcache=update_kvcache, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| class DreamPreTrainedModel(PreTrainedModel): | |
| config_class = DreamConfig | |
| base_model_prefix = "model" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["DreamDecoderLayer"] | |
| _skip_keys_device_placement = "past_key_values" | |
| _supports_flash_attn_2 = True | |
| _supports_sdpa = True | |
| _supports_cache_class = True | |
| _supports_quantized_cache = True | |
| _supports_static_cache = True | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| def from_pretrained( | |
| cls, | |
| pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
| *model_args, | |
| config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| ignore_mismatched_sizes: bool = False, | |
| force_download: bool = False, | |
| local_files_only: bool = False, | |
| token: Optional[Union[str, bool]] = None, | |
| revision: str = "main", | |
| use_safetensors: Optional[bool] = None, | |
| weights_only: bool = True, | |
| **kwargs, | |
| ): | |
| _model = super().from_pretrained( | |
| pretrained_model_name_or_path, | |
| *model_args, | |
| config=config, | |
| cache_dir=cache_dir, | |
| ignore_mismatched_sizes=ignore_mismatched_sizes, | |
| force_download=force_download, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| use_safetensors=use_safetensors, | |
| weights_only=weights_only, | |
| **kwargs, | |
| ) | |
| # NOTE(Lin): we need to override the generation config | |
| # because the generation config loaded in `from_pretrained` | |
| # does not include all the attributes of DreamGenerationConfig | |
| resume_download = kwargs.get("resume_download", None) | |
| proxies = kwargs.get("proxies", None) | |
| subfolder = kwargs.get("subfolder", "") | |
| from_auto_class = kwargs.get("_from_auto", False) | |
| from_pipeline = kwargs.get("_from_pipeline", None) | |
| _model.generation_config = DreamGenerationConfig.from_pretrained( | |
| pretrained_model_name_or_path, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| _from_auto=from_auto_class, | |
| _from_pipeline=from_pipeline, | |
| ) | |
| return _model | |
| class DreamBaseModel(DreamPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DreamDecoderLayer`] | |
| Args: | |
| config: DreamConfig | |
| """ | |
| def __init__(self, config: DreamConfig): | |
| super().__init__(config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
| self.layers = nn.ModuleList( | |
| [DreamDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
| ) | |
| self._attn_implementation = config._attn_implementation | |
| self.norm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.rotary_emb = DreamRotaryEmbedding(config=config) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| update_kvcache: torch.int32 = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| if inputs_embeds is None: | |
| # past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| # input_ids = input_ids[:, past_seen_tokens:] | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| # print("inputs_embeds",inputs_embeds.shape) | |
| if use_cache and past_key_values is None: | |
| past_key_values = DynamicCache() | |
| if cache_position is None: | |
| past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| cache_position = torch.arange( | |
| past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
| ) | |
| if position_ids is None: | |
| position_ids = cache_position.unsqueeze(0) | |
| hidden_states = inputs_embeds | |
| # create position embeddings to be shared across the decoder layers | |
| position_embeddings = self.rotary_emb(hidden_states, position_ids) | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| for decoder_layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| decoder_layer.__call__, | |
| hidden_states, | |
| attention_mask, | |
| position_ids, | |
| past_key_values, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| position_embeddings, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| update_kvcache=update_kvcache, | |
| position_ids=position_ids, | |
| past_key_value=past_key_values, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| hidden_states = self.norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns] if v is not None) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=past_key_values if use_cache else None, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| class DreamModel(DreamGenerationMixin, DreamPreTrainedModel): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model = DreamBaseModel(config) | |
| self.vocab_size = config.vocab_size | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def reset_rope_parameters(self): | |
| self.model.rotary_emb.reset_parameters() | |
| for layer in self.model.layers: | |
| layer.self_attn.rotary_emb.reset_parameters() | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.embed_tokens = value | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def set_decoder(self, decoder): | |
| self.model = decoder | |
| def get_decoder(self): | |
| return self.model | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| update_kvcache: torch.int32 = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| num_logits_to_keep: int = 0, | |
| **loss_kwargs, | |
| ) -> Union[Tuple, MaskedLMOutput]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| update_kvcache=update_kvcache, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| cache_position=cache_position, | |
| ) | |
| hidden_states = outputs[0] | |
| # Only compute necessary logits, and do not upcast them to float if we are not computing the loss | |
| logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) | |
| loss = None | |
| if labels is not None: | |
| loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |