Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,124 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
"
|
| 56 |
-
|
| 57 |
-
"
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
margin: 0 auto;
|
| 63 |
-
max-width: 640px;
|
| 64 |
-
}
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
with gr.Blocks(css=css) as demo:
|
| 68 |
-
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
| 70 |
-
|
| 71 |
with gr.Row():
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 81 |
-
|
| 82 |
-
result = gr.Image(label="Result", show_label=False)
|
| 83 |
-
|
| 84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
-
negative_prompt = gr.Text(
|
| 86 |
-
label="Negative prompt",
|
| 87 |
-
max_lines=1,
|
| 88 |
-
placeholder="Enter a negative prompt",
|
| 89 |
-
visible=False,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
seed = gr.Slider(
|
| 93 |
-
label="Seed",
|
| 94 |
-
minimum=0,
|
| 95 |
-
maximum=MAX_SEED,
|
| 96 |
-
step=1,
|
| 97 |
-
value=0,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
-
|
| 102 |
-
with gr.Row():
|
| 103 |
-
width = gr.Slider(
|
| 104 |
-
label="Width",
|
| 105 |
-
minimum=256,
|
| 106 |
-
maximum=MAX_IMAGE_SIZE,
|
| 107 |
-
step=32,
|
| 108 |
-
value=1024, # Replace with defaults that work for your model
|
| 109 |
)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
)
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
label="
|
| 122 |
-
minimum=0.0,
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
from transformers import BertTokenizer
|
| 4 |
+
|
| 5 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 6 |
+
names = ['负向', '正向']
|
| 7 |
+
|
| 8 |
+
# 分词器
|
| 9 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
|
| 10 |
+
|
| 11 |
+
# 加载预训练模型
|
| 12 |
+
bert_model = BertModel.from_pretrained("bert-base-chinese").to(device)
|
| 13 |
+
model = Model(bert_model).to(device)
|
| 14 |
+
model.load_state_dict(torch.load("/params/1bert.pt"))
|
| 15 |
+
# 切换到eval模式
|
| 16 |
+
model.eval()
|
| 17 |
+
|
| 18 |
+
def collate_fn(data):
|
| 19 |
+
sentes = []
|
| 20 |
+
sentes.append(data)
|
| 21 |
+
|
| 22 |
+
#编码
|
| 23 |
+
data = tokenizer.batch_encode_plus(
|
| 24 |
+
batch_text_or_text_pairs=sentes,
|
| 25 |
+
truncation=True,
|
| 26 |
+
padding="max_length",
|
| 27 |
+
max_length=350,
|
| 28 |
+
return_tensors="pt",
|
| 29 |
+
return_length=True
|
| 30 |
+
)
|
| 31 |
+
input_ids = data["input_ids"]
|
| 32 |
+
attention_mask = data["attention_mask"]
|
| 33 |
+
token_type_ids = data["token_type_ids"]
|
| 34 |
+
return input_ids, attention_mask, token_type_ids
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def analyze_sentiment(text):
|
| 38 |
+
input_ids, attention_mask, token_type_ids = collate_fn(text)
|
| 39 |
+
input_ids = input_ids.to(device)
|
| 40 |
+
attention_mask = attention_mask.to(device)
|
| 41 |
+
token_type_ids = token_type_ids.to(device)
|
| 42 |
+
# 上游不参与训练
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
out = model(input_ids, attention_mask, token_type_ids)
|
| 45 |
+
# 找到每个样本在指定维度上的最大值的索引
|
| 46 |
+
out = out.argmax(dim=1)
|
| 47 |
+
return f"{names[out]}评价", names[out]
|
| 48 |
+
|
| 49 |
+
def create_interface():
|
| 50 |
+
"""
|
| 51 |
+
创建Gradio界面
|
| 52 |
+
"""
|
| 53 |
+
with gr.Blocks(title="情感分析应用", theme=gr.themes.Soft()) as demo:
|
| 54 |
+
gr.Markdown("# 🎭 情感分析应用")
|
| 55 |
+
gr.Markdown("输入文本,AI将分析其情感倾向")
|
| 56 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
with gr.Row():
|
| 58 |
+
with gr.Column(scale=2):
|
| 59 |
+
# 输入区域
|
| 60 |
+
text_input = gr.Textbox(
|
| 61 |
+
label="输入要分析的文本",
|
| 62 |
+
placeholder="请输入您想要分析情感的文本...",
|
| 63 |
+
lines=4,
|
| 64 |
+
max_lines=10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
+
|
| 67 |
+
# 按钮
|
| 68 |
+
with gr.Row():
|
| 69 |
+
analyze_btn = gr.Button("🔍 分析情感", variant="primary")
|
| 70 |
+
clear_btn = gr.Button("🗑️ 清空", variant="secondary")
|
| 71 |
+
|
| 72 |
+
with gr.Column(scale=2):
|
| 73 |
+
# 输出区域
|
| 74 |
+
result_summary = gr.Textbox(
|
| 75 |
+
label="分析结果",
|
| 76 |
+
lines=3,
|
| 77 |
+
interactive=False
|
| 78 |
)
|
| 79 |
+
|
| 80 |
+
# 情感标签显示
|
| 81 |
+
sentiment_label = gr.Label(
|
| 82 |
+
label="情感分类",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
+
|
| 85 |
+
# 示例文本
|
| 86 |
+
gr.Markdown("### 📝 示例文本")
|
| 87 |
+
examples = gr.Examples(
|
| 88 |
+
examples=[
|
| 89 |
+
["这个产品真的很棒,我非常满意!"],
|
| 90 |
+
["服务态度太差了,完全不推荐"],
|
| 91 |
+
["还可以吧,没什么特别的感觉"],
|
| 92 |
+
["质量很好,物流也很快,五星好评!"],
|
| 93 |
+
["价格太贵了,性价比不高"]
|
| 94 |
+
],
|
| 95 |
+
inputs=text_input,
|
| 96 |
+
outputs=[result_summary, sentiment_label],
|
| 97 |
+
fn=analyze_sentiment,
|
| 98 |
+
cache_examples=False
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# 绑定事件
|
| 102 |
+
analyze_btn.click(
|
| 103 |
+
fn=analyze_sentiment,
|
| 104 |
+
inputs=text_input,
|
| 105 |
+
outputs=[result_summary, sentiment_label]
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
clear_btn.click(
|
| 109 |
+
fn=lambda: ("", "", ""),
|
| 110 |
+
outputs=[text_input, result_summary, sentiment_label]
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# 回车键触发分析
|
| 114 |
+
text_input.submit(
|
| 115 |
+
fn=analyze_sentiment,
|
| 116 |
+
inputs=text_input,
|
| 117 |
+
outputs=[result_summary, sentiment_label]
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
return demo
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
| 123 |
+
demo = create_interface()
|
| 124 |
+
demo.launch(debug=True)
|