Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 6 |
names = ['负向', '正向']
|
|
@@ -8,6 +9,25 @@ names = ['负向', '正向']
|
|
| 8 |
# 分词器
|
| 9 |
tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# 加载预训练模型
|
| 12 |
bert_model = BertModel.from_pretrained("ckiplab/bert-base-chinese").to(device)
|
| 13 |
model = Model(bert_model).to(device)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from transformers import BertTokenizer, BertModel
|
| 5 |
|
| 6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
names = ['负向', '正向']
|
|
|
|
| 9 |
# 分词器
|
| 10 |
tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
|
| 11 |
|
| 12 |
+
class Model(nn.Module):
|
| 13 |
+
def __init__(self, bert_model):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.bert = bert_model
|
| 16 |
+
# 全连接,模型输入为768,分类为2
|
| 17 |
+
self.fc = nn.Linear(768, 2)
|
| 18 |
+
|
| 19 |
+
#
|
| 20 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 21 |
+
# 使用预训练模型提取特征, 上游任务不参与训练,锁定权重
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
# Correctly call the BertModel instance stored in self.bert
|
| 24 |
+
output = self.bert(input_ids, attention_mask, token_type_ids)
|
| 25 |
+
# 下游参与训练,二分类任务,获取最新后的状态
|
| 26 |
+
output = self.fc(output.last_hidden_state[:, 0])
|
| 27 |
+
# softmax激活函数,NV结构,获取特征值dim维度为1
|
| 28 |
+
output = output.softmax(dim=1)
|
| 29 |
+
return output
|
| 30 |
+
|
| 31 |
# 加载预训练模型
|
| 32 |
bert_model = BertModel.from_pretrained("ckiplab/bert-base-chinese").to(device)
|
| 33 |
model = Model(bert_model).to(device)
|