Spaces:
Configuration error
Configuration error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import hashlib
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
from threading import Thread
|
| 7 |
+
import logging
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
from tinyllava.model.builder import load_pretrained_model
|
| 12 |
+
from tinyllava.mm_utils import (
|
| 13 |
+
KeywordsStoppingCriteria,
|
| 14 |
+
load_image_from_base64,
|
| 15 |
+
process_images,
|
| 16 |
+
tokenizer_image_token,
|
| 17 |
+
get_model_name_from_path,
|
| 18 |
+
)
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from io import BytesIO
|
| 21 |
+
import base64
|
| 22 |
+
import torch
|
| 23 |
+
from transformers import StoppingCriteria
|
| 24 |
+
from tinyllava.constants import (
|
| 25 |
+
DEFAULT_IM_END_TOKEN,
|
| 26 |
+
DEFAULT_IM_START_TOKEN,
|
| 27 |
+
DEFAULT_IMAGE_TOKEN,
|
| 28 |
+
IMAGE_TOKEN_INDEX,
|
| 29 |
+
)
|
| 30 |
+
from tinyllava.conversation import SeparatorStyle, conv_templates, default_conversation
|
| 31 |
+
|
| 32 |
+
from transformers import TextIteratorStreamer
|
| 33 |
+
from pathlib import Path
|
| 34 |
+
|
| 35 |
+
DEFAULT_MODEL_PATH = "bczhou/TinyLLaVA-3.1B"
|
| 36 |
+
DEFAULT_MODEL_NAME = "TinyLLaVA-3.1B"
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
block_css = """
|
| 40 |
+
|
| 41 |
+
#buttons button {
|
| 42 |
+
min-width: min(120px,100%);
|
| 43 |
+
}
|
| 44 |
+
"""
|
| 45 |
+
title_markdown = """
|
| 46 |
+
# TinyLLaVA: A Framework of Small-scale Large Multimodal Models
|
| 47 |
+
[[Code](https://github.com/DLCV-BUAA/TinyLLaVABench)] | 📚 [[Paper](https://arxiv.org/pdf/2402.14289.pdf)]
|
| 48 |
+
"""
|
| 49 |
+
tos_markdown = """
|
| 50 |
+
### Terms of use
|
| 51 |
+
By using this service, users are required to agree to the following terms:
|
| 52 |
+
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
|
| 53 |
+
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
|
| 54 |
+
"""
|
| 55 |
+
learn_more_markdown = """
|
| 56 |
+
### License
|
| 57 |
+
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
|
| 58 |
+
"""
|
| 59 |
+
ack_markdown = """
|
| 60 |
+
### Acknowledgement
|
| 61 |
+
The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community!
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def regenerate(state, image_process_mode):
|
| 66 |
+
state.messages[-1][-1] = None
|
| 67 |
+
prev_human_msg = state.messages[-2]
|
| 68 |
+
if type(prev_human_msg[1]) in (tuple, list):
|
| 69 |
+
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
|
| 70 |
+
state.skip_next = False
|
| 71 |
+
return (state, state.to_gradio_chatbot(), "", None)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def clear_history():
|
| 75 |
+
state = default_conversation.copy()
|
| 76 |
+
return (state, state.to_gradio_chatbot(), "", None)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def add_text(state, text, image, image_process_mode):
|
| 80 |
+
if len(text) <= 0 and image is None:
|
| 81 |
+
state.skip_next = True
|
| 82 |
+
return (state, state.to_gradio_chatbot(), "", None)
|
| 83 |
+
|
| 84 |
+
text = text[:1536] # Hard cut-off
|
| 85 |
+
if image is not None:
|
| 86 |
+
text = text[:1200] # Hard cut-off for images
|
| 87 |
+
if "<image>" not in text:
|
| 88 |
+
# text = '<Image><image></Image>' + text
|
| 89 |
+
text = text + "\n<image>"
|
| 90 |
+
text = (text, image, image_process_mode)
|
| 91 |
+
if len(state.get_images(return_pil=True)) > 0:
|
| 92 |
+
state = default_conversation.copy()
|
| 93 |
+
state.append_message(state.roles[0], text)
|
| 94 |
+
state.append_message(state.roles[1], None)
|
| 95 |
+
state.skip_next = False
|
| 96 |
+
return (state, state.to_gradio_chatbot(), "", None)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def load_demo():
|
| 100 |
+
state = default_conversation.copy()
|
| 101 |
+
return state
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@torch.inference_mode()
|
| 105 |
+
def get_response(params):
|
| 106 |
+
prompt = params["prompt"]
|
| 107 |
+
ori_prompt = prompt
|
| 108 |
+
images = params.get("images", None)
|
| 109 |
+
num_image_tokens = 0
|
| 110 |
+
if images is not None and len(images) > 0:
|
| 111 |
+
if len(images) > 0:
|
| 112 |
+
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
| 113 |
+
raise ValueError(
|
| 114 |
+
"Number of images does not match number of <image> tokens in prompt"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
images = [load_image_from_base64(image) for image in images]
|
| 118 |
+
images = process_images(images, image_processor, model.config)
|
| 119 |
+
|
| 120 |
+
if type(images) is list:
|
| 121 |
+
images = [
|
| 122 |
+
image.to(model.device, dtype=torch.float16) for image in images
|
| 123 |
+
]
|
| 124 |
+
else:
|
| 125 |
+
images = images.to(model.device, dtype=torch.float16)
|
| 126 |
+
|
| 127 |
+
replace_token = DEFAULT_IMAGE_TOKEN
|
| 128 |
+
if getattr(model.config, "mm_use_im_start_end", False):
|
| 129 |
+
replace_token = (
|
| 130 |
+
DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
| 131 |
+
)
|
| 132 |
+
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
| 133 |
+
|
| 134 |
+
num_image_tokens = (
|
| 135 |
+
prompt.count(replace_token) * model.get_vision_tower().num_patches
|
| 136 |
+
)
|
| 137 |
+
else:
|
| 138 |
+
images = None
|
| 139 |
+
image_args = {"images": images}
|
| 140 |
+
else:
|
| 141 |
+
images = None
|
| 142 |
+
image_args = {}
|
| 143 |
+
|
| 144 |
+
temperature = float(params.get("temperature", 1.0))
|
| 145 |
+
top_p = float(params.get("top_p", 1.0))
|
| 146 |
+
max_context_length = getattr(model.config, "max_position_embeddings", 2048)
|
| 147 |
+
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
| 148 |
+
stop_str = params.get("stop", None)
|
| 149 |
+
do_sample = True if temperature > 0.001 else False
|
| 150 |
+
logger.info(prompt)
|
| 151 |
+
input_ids = (
|
| 152 |
+
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
| 153 |
+
.unsqueeze(0)
|
| 154 |
+
.to(model.device)
|
| 155 |
+
)
|
| 156 |
+
keywords = [stop_str]
|
| 157 |
+
|
| 158 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 159 |
+
streamer = TextIteratorStreamer(
|
| 160 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
max_new_tokens = min(
|
| 164 |
+
max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
if max_new_tokens < 1:
|
| 168 |
+
yield json.dumps(
|
| 169 |
+
{
|
| 170 |
+
"text": ori_prompt
|
| 171 |
+
+ "Exceeds max token length. Please start a new conversation, thanks.",
|
| 172 |
+
"error_code": 0,
|
| 173 |
+
}
|
| 174 |
+
).encode() + b"\0"
|
| 175 |
+
return
|
| 176 |
+
|
| 177 |
+
# local inference
|
| 178 |
+
# BUG: If stopping_criteria is set, an error occur:
|
| 179 |
+
# RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 0
|
| 180 |
+
generate_kwargs = dict(
|
| 181 |
+
inputs=input_ids,
|
| 182 |
+
do_sample=do_sample,
|
| 183 |
+
temperature=temperature,
|
| 184 |
+
top_p=top_p,
|
| 185 |
+
max_new_tokens=max_new_tokens,
|
| 186 |
+
streamer=streamer,
|
| 187 |
+
# stopping_criteria=[stopping_criteria],
|
| 188 |
+
use_cache=True,
|
| 189 |
+
**image_args,
|
| 190 |
+
)
|
| 191 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 192 |
+
thread.start()
|
| 193 |
+
logger.debug(ori_prompt)
|
| 194 |
+
logger.debug(generate_kwargs)
|
| 195 |
+
generated_text = ori_prompt
|
| 196 |
+
for new_text in streamer:
|
| 197 |
+
generated_text += new_text
|
| 198 |
+
if generated_text.endswith(stop_str):
|
| 199 |
+
generated_text = generated_text[: -len(stop_str)]
|
| 200 |
+
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def http_bot(state, temperature, top_p, max_new_tokens):
|
| 204 |
+
if state.skip_next:
|
| 205 |
+
# This generate call is skipped due to invalid inputs
|
| 206 |
+
yield (state, state.to_gradio_chatbot())
|
| 207 |
+
return
|
| 208 |
+
|
| 209 |
+
if len(state.messages) == state.offset + 2:
|
| 210 |
+
# First round of conversation
|
| 211 |
+
|
| 212 |
+
if "tinyllava" in model_name.lower():
|
| 213 |
+
if "3.1b" in model_name.lower() or "phi" in model_name.lower():
|
| 214 |
+
template_name = "phi"
|
| 215 |
+
elif "2.0b" in model_name.lower() or "stablelm" in model_name.lower():
|
| 216 |
+
template_name = "phi"
|
| 217 |
+
elif "qwen" in model_name.lower():
|
| 218 |
+
template_name = "qwen"
|
| 219 |
+
else:
|
| 220 |
+
template_name = "v1"
|
| 221 |
+
|
| 222 |
+
elif "llava" in model_name.lower():
|
| 223 |
+
|
| 224 |
+
if "llama-2" in model_name.lower():
|
| 225 |
+
template_name = "llava_llama_2"
|
| 226 |
+
elif "v1" in model_name.lower():
|
| 227 |
+
if "mmtag" in model_name.lower():
|
| 228 |
+
template_name = "v1_mmtag"
|
| 229 |
+
elif (
|
| 230 |
+
"plain" in model_name.lower()
|
| 231 |
+
and "finetune" not in model_name.lower()
|
| 232 |
+
):
|
| 233 |
+
template_name = "v1_mmtag"
|
| 234 |
+
else:
|
| 235 |
+
template_name = "llava_v1"
|
| 236 |
+
elif "mpt" in model_name.lower():
|
| 237 |
+
template_name = "mpt"
|
| 238 |
+
else:
|
| 239 |
+
if "mmtag" in model_name.lower():
|
| 240 |
+
template_name = "v0_mmtag"
|
| 241 |
+
elif (
|
| 242 |
+
"plain" in model_name.lower()
|
| 243 |
+
and "finetune" not in model_name.lower()
|
| 244 |
+
):
|
| 245 |
+
template_name = "v0_mmtag"
|
| 246 |
+
else:
|
| 247 |
+
template_name = "llava_v0"
|
| 248 |
+
elif "mpt" in model_name:
|
| 249 |
+
template_name = "mpt_text"
|
| 250 |
+
elif "llama-2" in model_name:
|
| 251 |
+
template_name = "llama_2"
|
| 252 |
+
else:
|
| 253 |
+
template_name = "vicuna_v1"
|
| 254 |
+
new_state = conv_templates[template_name].copy()
|
| 255 |
+
new_state.append_message(new_state.roles[0], state.messages[-2][1])
|
| 256 |
+
new_state.append_message(new_state.roles[1], None)
|
| 257 |
+
state = new_state
|
| 258 |
+
|
| 259 |
+
# Construct prompt
|
| 260 |
+
prompt = state.get_prompt()
|
| 261 |
+
|
| 262 |
+
all_images = state.get_images(return_pil=True)
|
| 263 |
+
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
|
| 264 |
+
|
| 265 |
+
# Make requests
|
| 266 |
+
# pload = {"model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p),
|
| 267 |
+
# "max_new_tokens": min(int(max_new_tokens), 1536), "stop": (
|
| 268 |
+
# state.sep
|
| 269 |
+
# if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT]
|
| 270 |
+
# else state.sep2
|
| 271 |
+
# ), "images": state.get_images()}
|
| 272 |
+
|
| 273 |
+
pload = {
|
| 274 |
+
"model": model_name,
|
| 275 |
+
"prompt": prompt,
|
| 276 |
+
"temperature": float(temperature),
|
| 277 |
+
"top_p": float(top_p),
|
| 278 |
+
"max_new_tokens": min(int(max_new_tokens), 1536),
|
| 279 |
+
"stop": (
|
| 280 |
+
state.sep
|
| 281 |
+
if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT]
|
| 282 |
+
else state.sep2
|
| 283 |
+
), "images": state.get_images()}
|
| 284 |
+
|
| 285 |
+
state.messages[-1][-1] = "▌"
|
| 286 |
+
yield (state, state.to_gradio_chatbot())
|
| 287 |
+
|
| 288 |
+
# for stream
|
| 289 |
+
output = get_response(pload)
|
| 290 |
+
for chunk in output:
|
| 291 |
+
if chunk:
|
| 292 |
+
data = json.loads(chunk.decode())
|
| 293 |
+
if data["error_code"] == 0:
|
| 294 |
+
output = data["text"][len(prompt) :].strip()
|
| 295 |
+
state.messages[-1][-1] = output + "▌"
|
| 296 |
+
yield (state, state.to_gradio_chatbot())
|
| 297 |
+
else:
|
| 298 |
+
output = data["text"] + f" (error_code: {data['error_code']})"
|
| 299 |
+
state.messages[-1][-1] = output
|
| 300 |
+
yield (state, state.to_gradio_chatbot())
|
| 301 |
+
return
|
| 302 |
+
time.sleep(0.03)
|
| 303 |
+
|
| 304 |
+
state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
| 305 |
+
yield (state, state.to_gradio_chatbot())
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def build_demo():
|
| 309 |
+
textbox = gr.Textbox(
|
| 310 |
+
show_label=False, placeholder="Enter text and press ENTER", container=False
|
| 311 |
+
)
|
| 312 |
+
with gr.Blocks(title="TinyLLaVA", theme=gr.themes.Default(), css=block_css) as demo:
|
| 313 |
+
state = gr.State()
|
| 314 |
+
gr.Markdown(title_markdown)
|
| 315 |
+
|
| 316 |
+
with gr.Row():
|
| 317 |
+
with gr.Column(scale=5):
|
| 318 |
+
with gr.Row(elem_id="Model ID"):
|
| 319 |
+
gr.Dropdown(
|
| 320 |
+
choices=[DEFAULT_MODEL_NAME],
|
| 321 |
+
value=DEFAULT_MODEL_NAME,
|
| 322 |
+
interactive=True,
|
| 323 |
+
label="Model ID",
|
| 324 |
+
container=False,
|
| 325 |
+
)
|
| 326 |
+
imagebox = gr.Image(type="pil")
|
| 327 |
+
image_process_mode = gr.Radio(
|
| 328 |
+
["Crop", "Resize", "Pad", "Default"],
|
| 329 |
+
value="Default",
|
| 330 |
+
label="Preprocess for non-square image",
|
| 331 |
+
visible=False,
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# cur_dir = os.path.dirname(os.path.abspath(__file__))
|
| 335 |
+
cur_dir = Path(__file__).parent
|
| 336 |
+
gr.Examples(
|
| 337 |
+
examples=[
|
| 338 |
+
[
|
| 339 |
+
f"{cur_dir}/examples/extreme_ironing.jpg",
|
| 340 |
+
"What is unusual about this image?",
|
| 341 |
+
],
|
| 342 |
+
[
|
| 343 |
+
f"{cur_dir}/examples/waterview.jpg",
|
| 344 |
+
"What are the things I should be cautious about when I visit here?",
|
| 345 |
+
],
|
| 346 |
+
],
|
| 347 |
+
inputs=[imagebox, textbox],
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
with gr.Accordion("Parameters", open=False) as _:
|
| 351 |
+
temperature = gr.Slider(
|
| 352 |
+
minimum=0.0,
|
| 353 |
+
maximum=1.0,
|
| 354 |
+
value=0.2,
|
| 355 |
+
step=0.1,
|
| 356 |
+
interactive=True,
|
| 357 |
+
label="Temperature",
|
| 358 |
+
)
|
| 359 |
+
top_p = gr.Slider(
|
| 360 |
+
minimum=0.0,
|
| 361 |
+
maximum=1.0,
|
| 362 |
+
value=0.7,
|
| 363 |
+
step=0.1,
|
| 364 |
+
interactive=True,
|
| 365 |
+
label="Top P",
|
| 366 |
+
)
|
| 367 |
+
max_output_tokens = gr.Slider(
|
| 368 |
+
minimum=0,
|
| 369 |
+
maximum=1024,
|
| 370 |
+
value=512,
|
| 371 |
+
step=64,
|
| 372 |
+
interactive=True,
|
| 373 |
+
label="Max output tokens",
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
with gr.Column(scale=8):
|
| 377 |
+
chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550)
|
| 378 |
+
with gr.Row():
|
| 379 |
+
with gr.Column(scale=8):
|
| 380 |
+
textbox.render()
|
| 381 |
+
with gr.Column(scale=1, min_width=50):
|
| 382 |
+
submit_btn = gr.Button(value="Send", variant="primary")
|
| 383 |
+
with gr.Row(elem_id="buttons") as _:
|
| 384 |
+
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
|
| 385 |
+
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
|
| 386 |
+
|
| 387 |
+
gr.Markdown(tos_markdown)
|
| 388 |
+
gr.Markdown(learn_more_markdown)
|
| 389 |
+
gr.Markdown(ack_markdown)
|
| 390 |
+
|
| 391 |
+
regenerate_btn.click(
|
| 392 |
+
regenerate,
|
| 393 |
+
[state, image_process_mode],
|
| 394 |
+
[state, chatbot, textbox, imagebox],
|
| 395 |
+
queue=False,
|
| 396 |
+
).then(
|
| 397 |
+
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
clear_btn.click(
|
| 401 |
+
clear_history, None, [state, chatbot, textbox, imagebox], queue=False
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
textbox.submit(
|
| 405 |
+
add_text,
|
| 406 |
+
[state, textbox, imagebox, image_process_mode],
|
| 407 |
+
[state, chatbot, textbox, imagebox],
|
| 408 |
+
queue=False,
|
| 409 |
+
).then(
|
| 410 |
+
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
submit_btn.click(
|
| 414 |
+
add_text,
|
| 415 |
+
[state, textbox, imagebox, image_process_mode],
|
| 416 |
+
[state, chatbot, textbox, imagebox],
|
| 417 |
+
queue=False,
|
| 418 |
+
).then(
|
| 419 |
+
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
demo.load(load_demo, None, [state], queue=False)
|
| 423 |
+
return demo
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
def parse_args():
|
| 427 |
+
parser = argparse.ArgumentParser()
|
| 428 |
+
parser.add_argument("--host", type=str, default=None)
|
| 429 |
+
parser.add_argument("--port", type=int, default=None)
|
| 430 |
+
parser.add_argument("--share", default=None)
|
| 431 |
+
parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH)
|
| 432 |
+
parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_NAME)
|
| 433 |
+
parser.add_argument("--load-8bit", action="store_true")
|
| 434 |
+
parser.add_argument("--load-4bit", action="store_true")
|
| 435 |
+
args = parser.parse_args()
|
| 436 |
+
return args
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
if __name__ == "__main__":
|
| 440 |
+
logging.basicConfig(
|
| 441 |
+
level=logging.INFO,
|
| 442 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 443 |
+
)
|
| 444 |
+
logger = logging.getLogger(__name__)
|
| 445 |
+
logger.info(gr.__version__)
|
| 446 |
+
args = parse_args()
|
| 447 |
+
model_name = args.model_name
|
| 448 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
| 449 |
+
model_path=args.model_path,
|
| 450 |
+
model_base=None,
|
| 451 |
+
model_name=args.model_name,
|
| 452 |
+
load_4bit=args.load_4bit,
|
| 453 |
+
load_8bit=args.load_8bit
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
demo = build_demo()
|
| 457 |
+
demo.queue()
|
| 458 |
+
demo.launch(server_name=args.host, server_port=args.port, share=args.share)
|