Create train_script.py
Browse files- train_script.py +100 -0
train_script.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from sentence_transformers import (
|
| 3 |
+
SparseEncoder,
|
| 4 |
+
SparseEncoderTrainer,
|
| 5 |
+
SparseEncoderTrainingArguments,
|
| 6 |
+
SparseEncoderModelCardData,
|
| 7 |
+
)
|
| 8 |
+
from sentence_transformers.sparse_encoder.losses import SpladeLoss, SparseMultipleNegativesRankingLoss
|
| 9 |
+
from sentence_transformers.training_args import BatchSamplers
|
| 10 |
+
from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator
|
| 11 |
+
from sentence_transformers.sparse_encoder.models import SpladePooling, MLMTransformer, IDF
|
| 12 |
+
from sentence_transformers.models import Asym
|
| 13 |
+
|
| 14 |
+
import logging
|
| 15 |
+
|
| 16 |
+
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
|
| 17 |
+
|
| 18 |
+
# 1. Load a model to finetune with 2. (Optional) model card data
|
| 19 |
+
mlm_transformer = MLMTransformer("prajjwal1/bert-tiny", tokenizer_args={"model_max_length": 512})
|
| 20 |
+
splade_pooling = SpladePooling(pooling_strategy="max", word_embedding_dimension=mlm_transformer.get_sentence_embedding_dimension())
|
| 21 |
+
|
| 22 |
+
asym = Asym({
|
| 23 |
+
"query": [IDF(tokenizer=mlm_transformer.tokenizer, frozen=False)],
|
| 24 |
+
"document": [mlm_transformer, splade_pooling],
|
| 25 |
+
})
|
| 26 |
+
|
| 27 |
+
model = SparseEncoder(
|
| 28 |
+
modules=[asym],
|
| 29 |
+
model_card_data=SparseEncoderModelCardData(
|
| 30 |
+
language="en",
|
| 31 |
+
license="apache-2.0",
|
| 32 |
+
model_name="Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples",
|
| 33 |
+
)
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# 3. Load a dataset to finetune on
|
| 37 |
+
full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000))
|
| 38 |
+
# full_dataset = full_dataset.map(lambda sample: {"query": {"query": sample["query"]}, "corpus": {"corpus": sample["answer"]}}, remove_columns=["query", "answer"])
|
| 39 |
+
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
|
| 40 |
+
train_dataset = dataset_dict["train"]
|
| 41 |
+
eval_dataset = dataset_dict["test"]
|
| 42 |
+
print(train_dataset)
|
| 43 |
+
print(train_dataset[0])
|
| 44 |
+
|
| 45 |
+
# 4. Define a loss function
|
| 46 |
+
loss = SpladeLoss(
|
| 47 |
+
model=model,
|
| 48 |
+
loss=SparseMultipleNegativesRankingLoss(model=model),
|
| 49 |
+
lambda_query=0,
|
| 50 |
+
lambda_corpus=3e-2,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# 5. (Optional) Specify training arguments
|
| 54 |
+
run_name = "inference-free-splade-bert-tiny-nq-fresh-3e-2-lambda-corpus-1e-3-idf-lr-2e-5-lr"
|
| 55 |
+
args = SparseEncoderTrainingArguments(
|
| 56 |
+
# Required parameter:
|
| 57 |
+
output_dir=f"models/{run_name}",
|
| 58 |
+
# Optional training parameters:
|
| 59 |
+
num_train_epochs=1,
|
| 60 |
+
per_device_train_batch_size=64,
|
| 61 |
+
per_device_eval_batch_size=64,
|
| 62 |
+
learning_rate=2e-5,
|
| 63 |
+
learning_rate_mapping={"IDF\.weight": 1e-3}, # Set a higher learning rate for the IDF module
|
| 64 |
+
warmup_ratio=0.1,
|
| 65 |
+
fp16=True, # Set to False if you get an error that your GPU can't run on FP16
|
| 66 |
+
bf16=False, # Set to True if you have a GPU that supports BF16
|
| 67 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
| 68 |
+
router_mapping=["query", "document"],
|
| 69 |
+
# Optional tracking/debugging parameters:
|
| 70 |
+
eval_strategy="steps",
|
| 71 |
+
eval_steps=200,
|
| 72 |
+
save_strategy="steps",
|
| 73 |
+
save_steps=200,
|
| 74 |
+
save_total_limit=2,
|
| 75 |
+
logging_steps=20,
|
| 76 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# 6. (Optional) Create an evaluator & evaluate the base model
|
| 80 |
+
dev_evaluator = SparseNanoBEIREvaluator(dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=128)
|
| 81 |
+
|
| 82 |
+
# 7. Create a trainer & train
|
| 83 |
+
trainer = SparseEncoderTrainer(
|
| 84 |
+
model=model,
|
| 85 |
+
args=args,
|
| 86 |
+
train_dataset=train_dataset,
|
| 87 |
+
eval_dataset=eval_dataset,
|
| 88 |
+
loss=loss,
|
| 89 |
+
evaluator=dev_evaluator,
|
| 90 |
+
)
|
| 91 |
+
trainer.train()
|
| 92 |
+
|
| 93 |
+
# 8. Evaluate the model performance again after training
|
| 94 |
+
dev_evaluator(model)
|
| 95 |
+
|
| 96 |
+
# 9. Save the trained model
|
| 97 |
+
model.save_pretrained(f"models/{run_name}/final")
|
| 98 |
+
|
| 99 |
+
# 10. (Optional) Push it to the Hugging Face Hub
|
| 100 |
+
model.push_to_hub(run_name)
|