#!/usr/bin/env python3 # -*- coding: utf-8 -*- # python3 cek_model_v6.py --weights /workspace/captcha_final.weights.h5 --image /workspace/dataset_500/style7/K9NO2.png # python3 cek_model_v6.py --weights /workspace/captcha_final.weights.h5 --data-root /workspace/dataset_500 --samples 64 # python3 cek_model_v6.py --weights captcha_final.weights.h5 --data-root /datasets/dataset_500 --samples 64 import os, re, glob, argparse, sys, time from pathlib import Path import numpy as np from PIL import Image import tensorflow as tf from tensorflow.keras import layers, models, backend as K # ---------------- Args ---------------- def parse_args(): p = argparse.ArgumentParser("Test inference CRNN+CTC dari weights Keras 3 (model_with_ctc.save_weights).") p.add_argument("--weights", required=True, help="Path ke *.weights.h5 (hasil save_weights).") p.add_argument("--image", help="Uji 1 gambar (PNG/JPG). Nama file jadi GT jika --gt tidak diisi.") p.add_argument("--gt", help="Ground truth untuk --image (opsional, default dari nama file).") p.add_argument("--data-root", help="Root dataset berisi style0..style59/LABEL.png untuk batch test.") p.add_argument("--samples", type=int, default=64, help="Jumlah sampel di batch test.") p.add_argument("--height", type=int, default=50) p.add_argument("--width", type=int, default=250) p.add_argument("--ext", type=str, default="png") p.add_argument("--show", type=int, default=12, help="Banyak baris contoh yang ditampilkan.") return p.parse_args() # ------------- Charset & util ------------- CHARSET = list("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ") BLANK_ID = len(CHARSET) # 36 ID2CHAR = np.array(CHARSET) def collapse_and_strip_blanks(seq_ids, blank_id=BLANK_ID): prev = -1; out = [] for t in seq_ids: if t != prev and t != blank_id: out.append(t) prev = t return out def ids_to_text(ids): ids = [i for i in ids if 0 <= i < len(CHARSET)] return "".join(ID2CHAR[ids]) if ids else "" def cer(pred, gt): m, n = len(pred), len(gt) if n == 0: return 0.0 if m == 0 else 1.0 dp = np.zeros((m+1, n+1), dtype=np.int32) dp[:,0] = np.arange(m+1); dp[0,:] = np.arange(n+1) for i in range(1, m+1): for j in range(1, n+1): dp[i,j] = min(dp[i-1,j]+1, dp[i,j-1]+1, dp[i-1,j-1] + (pred[i-1]!=gt[j-1])) return dp[m,n] / n # ------------- Model builders ------------- def build_models(h=50, w=250, num_classes=len(CHARSET)+1): inp = layers.Input(shape=(h, w, 1), name="input") x = layers.Conv2D(32, (3,3), activation="relu", padding="same")(inp) x = layers.BatchNormalization()(x) x = layers.MaxPooling2D((2,2))(x) # 50x250 -> 25x125 x = layers.Conv2D(64, (3,3), activation="relu", padding="same")(x) x = layers.BatchNormalization()(x) x = layers.MaxPooling2D((2,2))(x) # 25x125 -> 12x62 x = layers.Conv2D(128, (3,3), activation="relu", padding="same")(x) x = layers.BatchNormalization()(x) x = layers.MaxPooling2D((2,2))(x) # 12x62 -> 6x31 shp = K.int_shape(x) # (None, 6, 31, 128) x = layers.Reshape((shp[2], shp[1]*shp[3]))(x) # (None, 31, 768) x = layers.Bidirectional(layers.LSTM(128, return_sequences=True, dropout=0.0, recurrent_dropout=0.0))(x) x = layers.Bidirectional(layers.LSTM(128, return_sequences=True, dropout=0.0, recurrent_dropout=0.0))(x) pred = layers.Dense(num_classes, activation="softmax", name="predictions")(x) # CTC inputs untuk menyamai graph training labels = layers.Input(name="labels", shape=(None,), dtype="int32") input_len = layers.Input(name="input_length", shape=(1,), dtype="int32") label_len = layers.Input(name="label_length", shape=(1,), dtype="int32") def ctc_fn(args): y_pred, labels_t, in_l, lab_l = args return K.ctc_batch_cost(labels_t, y_pred, in_l, lab_l) ctc = layers.Lambda(ctc_fn, output_shape=(1,), name="ctc_loss", dtype="float32")([pred, labels, input_len, label_len]) model_with_ctc = models.Model(inputs=[inp, labels, input_len, label_len], outputs=ctc, name="crnn_ctc_train") base_model = models.Model(inputs=inp, outputs=pred, name="crnn_ctc_base") return model_with_ctc, base_model # ------------- IO & preprocess ------------- def preprocess_gray(img_pil, h=50, w=250): im = img_pil.convert("L").resize((w, h), Image.BILINEAR) arr = np.asarray(im, dtype=np.float32) / 255.0 arr = (arr - 0.5) / 0.5 return arr[..., None] # (H,W,1) def list_files(root, ext="png", max_n=64): rootp = Path(root) pat = re.compile(r"^[A-Z0-9]{5}$") pairs = [] for sid in range(60): d = rootp / f"style{sid}" if not d.exists(): continue for f in glob.glob(str(d / f"*.{ext}")): lbl = Path(f).stem.upper() if pat.match(lbl): pairs.append((f, lbl)) if len(pairs) >= max_n: break if len(pairs) >= max_n: break return pairs # ------------- Predict helpers ------------- def predict_batch(base_model, batch_imgs): """batch_imgs: np.array (B,H,W,1) float32 [-1,1]""" probs = base_model.predict(batch_imgs, verbose=0) # (B, 31, 37) ids = np.argmax(probs, axis=-1) # (B, 31) texts = [] for row in ids: dec = collapse_and_strip_blanks(row, blank_id=BLANK_ID) texts.append(ids_to_text(dec)) return texts def main(): args = parse_args() # (opsional) batasi threads kalau container ketat os.environ.setdefault("TF_NUM_INTRAOP_THREADS", "1") os.environ.setdefault("TF_NUM_INTEROP_THREADS", "1") os.environ.setdefault("OMP_NUM_THREADS", "1") # 1) Bangun model & load weights wpath = Path(args.weights) if not wpath.exists(): print("Weights not found:", wpath); sys.exit(1) st = wpath.stat() print(f"Found weights: {wpath} | size: {st.st_size/1024:.1f} KB | mtime: {time.ctime(st.st_mtime)}") print("TF GPUs:", tf.config.list_physical_devices('GPU')) model_with_ctc, base_model = build_models(h=args.height, w=args.width, num_classes=len(CHARSET)+1) try: model_with_ctc.load_weights(str(wpath)) print("OK: weights loaded.") except Exception as e: print("Failed to load weights:", e); sys.exit(2) print("Base output shape:", base_model.output_shape) # Expect (None, 31, 37) # 2A) Single image test if args.image: f = Path(args.image) if not f.exists(): print("Image not found:", f); sys.exit(3) with Image.open(f) as im: x = preprocess_gray(im, h=args.height, w=args.width) pred = predict_batch(base_model, np.expand_dims(x, 0))[0] gt = args.gt if args.gt else f.stem.upper() print(f"\nSingle image:") print(f"GT : {gt}") print(f"PRED: {pred}") sys.exit(0) # 2B) Batch test dari dataset if args.data_root: pairs = list_files(args.data_root, ext=args.ext, max_n=args.samples) if not pairs: print("No valid files in dataset root."); sys.exit(0) print(f"Testing on {len(pairs)} samples from {args.data_root} ...") X, GT = [], [] for f, lbl in pairs: with Image.open(f) as im: X.append(preprocess_gray(im, h=args.height, w=args.width)) GT.append(lbl) X = np.stack(X, 0).astype(np.float32) PRED = predict_batch(base_model, X) exact = np.mean([int(p == g) for p, g in zip(PRED, GT)]) cer_vals = [cer(p, g) for p, g in zip(PRED, GT)] for i in range(min(args.show, len(PRED))): print(f"{i:02d} GT: {GT[i]} | Pred: {PRED[i]}") print(f"\nExact match: {exact*100:.2f}% | Mean CER: {float(np.mean(cer_vals)):.4f}\n") print(f"Total images tested: {len(PRED)}\n") sys.exit(0) print("Nothing to test. Provide --image or --data-root.") sys.exit(0) if __name__ == "__main__": main()