# -*- coding: utf-8 -*- # Install Library # pip install -U tensorflow[and-cuda] torch torchvision pandas scikit-learn pillow numpy # pip install -U tf-nightly[and-cuda] torch torchvision pandas scikit-learn pillow numpy # pip install -U tensorflow torch torchvision pandas scikit-learn pillow numpy # pip install -U "tensorflow[and-cuda]==2.17.0" # pip install torch==2.8.0 torchvision==0.23.0 # pip uninstall -y tensorflow tensorflow-cpu tensorflow-intel tensorflow-gpu # pip cache purge # # opsi A: nightly bundling CUDA # pip install -U "tf-nightly[and-cuda]" # # atau opsi B (kalau A tidak tersedia di index kamu): # pip install -U tf-nightly import tensorflow as tf gpus = tf.config.list_physical_devices('GPU') print(gpus) if gpus: try: # for gpu in gpus: # tf.config.experimental.set_memory_growth(gpu, True) # no full prealloc print(f"GPU aktif: {gpus}") except Exception as e: print("Set memory growth gagal:", e) else: print("Tidak ada GPU terdeteksi.") # Clean UP Dataset Make Sure Every Style Same Image import os BASE_DIR = "/workspace/dataset" # ubah sesuai path dataset kamu START, END = 0, 59 # style0..style59 DRY_RUN = False # ubah ke False untuk beneran hapus def main(): base = os.path.abspath(BASE_DIR) ref_dir = os.path.join(base, f"style{START}") if not os.path.isdir(ref_dir): print(f"āŒ Folder {ref_dir} tidak ditemukan.") return files_ref = sorted([f for f in os.listdir(ref_dir) if f.lower().endswith(".png")]) print(f"šŸ” Total referensi dari style{START}: {len(files_ref)} file") # Cari file yang lengkap di semua style complete = [] missing = {} for fname in files_ref: ok = True for i in range(START, END + 1): style_path = os.path.join(base, f"style{i}", fname) if not os.path.isfile(style_path): ok = False missing.setdefault(fname, []).append(f"style{i}") if ok: complete.append(fname) print(f"āœ… Lengkap di semua style: {len(complete)} file") print(f"āŒ Tidak lengkap: {len(missing)} file") # Hapus file yang tidak lengkap dari semua style if missing: for fname, styles in missing.items(): for i in range(START, END + 1): path = os.path.join(base, f"style{i}", fname) if os.path.isfile(path): if not DRY_RUN: os.remove(path) print(f"šŸ—‘ļø Hapus {path}") print(f"\nšŸ”„ Selesai! Total {len(missing)} file dibersihkan dari semua style folder.") else: print("Semua file sudah lengkap di semua style — tidak ada yang dihapus.") if __name__ == "__main__": main() import os from glob import glob import pandas as pd data = [] root_dir = "/workspace/dataset" for style_id in range(60): folder_path = os.path.join(root_dir, f"style{style_id}") image_paths = glob(os.path.join(folder_path, "*.png")) for path in image_paths: label = os.path.splitext(os.path.basename(path))[0] # ambil nama file tanpa ekstensi data.append((path, label, f"style{style_id}")) df = pd.DataFrame(data, columns=["filepath", "label", "style"]) df import re import pandas as pd from collections import Counter # --- aturan ketat: 5 karakter, A-Z atau 0-9 saja --- ALLOWED_REGEX_STRICT = r'^[A-Z0-9]{5}$' ALLOWED_REGEX_LEN5_ALNUM = r'^[A-Za-z0-9]{5}$' # kalau mau toleransi lowercase hanya untuk deteksi # pastikan kolom label rapi untuk diperiksa df['label'] = df['label'].astype(str).str.strip() # 1) MASK PELANGGAR (ketat) invalid_mask = ~df['label'].str.match(ALLOWED_REGEX_STRICT, na=True) invalid_df = df[invalid_mask].copy() # 2) KATEGORIKAN PENYEBAB df['len'] = df['label'].str.len() too_short = df[df['len'] < 5] too_long = df[df['len'] > 5] has_non_alnum = df[df['label'].str.contains(r'[^A-Za-z0-9]', na=True)] has_lower = df[df['label'].str.contains(r'[a-z]', na=True)] # masih ada huruf kecil? # 3) KARAKTER NAKAL (non-alnum) YANG MUNCUL def extract_bad_chars(s: str): return re.findall(r'[^A-Za-z0-9]', s) bad_chars_counter = Counter() for lab in has_non_alnum['label'].dropna().tolist(): bad_chars_counter.update(extract_bad_chars(lab)) bad_chars_list = sorted(bad_chars_counter.items(), key=lambda x: -x[1]) # 4) RINGKASAN print("=== VALIDASI LABEL ===") print(f"Total data : {len(df)}") print(f"Tidak valid (ketat): {len(invalid_df)}") print(f"- Panjang < 5 : {len(too_short)}") print(f"- Panjang > 5 : {len(too_long)}") print(f"- Ada non-alnum : {len(has_non_alnum)}") print(f"- Ada lowercase : {len(has_lower)}") # contoh beberapa label bermasalah if len(invalid_df) > 0: sampel = invalid_df['label'].head(20).tolist() print("\nContoh label tidak valid (maks 20):", sampel) # karakter non-alnum beserta frekuensinya if bad_chars_list: print("\nKarakter non-alnum yang muncul (char, count):", bad_chars_list[:20]) # 5) SIMPAN DAFTAR PELANGGAR KE CSV (biar bisa diperbaiki manual / rename file) if len(invalid_df) > 0: invalid_df.to_csv("invalid_labels.csv", index=False) print("\n>> Disimpan: invalid_labels.csv") # 6) OPSIONAL: STOP TRAINING JIKA MASIH ADA PELANGGAR if len(invalid_df) > 0: raise ValueError( f"Ditemukan {len(invalid_df)} label tidak valid. Perbaiki dulu (lihat invalid_labels.csv)." ) # Contoh: validasi panjang label = 5, hanya alphanumeric # df = df[df['label'].str.match(r'^[a-zA-Z0-9]{5}$')] df from sklearn.model_selection import train_test_split train_df, test_df = train_test_split(df, test_size=0.1, random_state=42, stratify=df['style']) train_df, val_df = train_test_split(train_df, test_size=0.1, random_state=42, stratify=train_df['style']) from torchvision import transforms from PIL import Image transform = transforms.Compose([ transforms.Resize((50, 250)), # Ukuran umum CAPTCHA transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) # Normalisasi ke -1..1 ]) def load_image(path): img = Image.open(path).convert("L") # convert to grayscale return transform(img) from torch.utils.data import Dataset class CaptchaDataset(Dataset): def __init__(self, dataframe, transform): self.dataframe = dataframe.reset_index(drop=True) self.transform = transform def __len__(self): return len(self.dataframe) def __getitem__(self, idx): row = self.dataframe.iloc[idx] image = Image.open(row.filepath).convert("L") image = self.transform(image) label = row.label return image, label from tensorflow.keras import mixed_precision mixed_precision.set_global_policy('mixed_float16') # aktivasi AMP import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Reshape, Bidirectional, LSTM, Dense, Dropout, Activation, BatchNormalization from tensorflow.keras import backend as K # Define the character set (based on your label data) # You need to create a character set based on the unique characters in your 'label' column # For example: # char_set = sorted(list(set("".join(df['label'].unique())))) # num_classes = len(char_set) + 1 # +1 for the blank label for CTC # Placeholder for the actual character set - replace with your data's character set # char_set = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" char_set = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" num_classes = len(char_set) + 1 # +1 for the blank label for CTC # Model parameters # input_shape = (60, 160, 1) # (height, width, channels) input_shape = (50, 250, 1) # (height, width, channels) lstm_units = 128 # Input layer input_tensor = Input(shape=input_shape, name='input') # Convolutional layers (CNN) x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_tensor) x = BatchNormalization()(x) x = MaxPooling2D((2, 2))(x) x = Conv2D(64, (3, 3), activation='relu', padding='same')(x) x = BatchNormalization()(x) x = MaxPooling2D((2, 2))(x) x = Conv2D(128, (3, 3), activation='relu', padding='same')(x) x = BatchNormalization()(x) x = MaxPooling2D((2, 2))(x) # Reshape for RNN # The output shape of the last pooling layer is (batch_size, height, width, filters) # We need to reshape it to (batch_size, time_steps, features) for the RNN # time_steps will be the width of the feature maps after pooling # features will be height * filters shape_before_rnn = K.int_shape(x) x = Reshape(target_shape=(shape_before_rnn[2], shape_before_rnn[1] * shape_before_rnn[3]))(x) # Recurrent layers (RNN - Bidirectional LSTM) # x = Bidirectional(LSTM(lstm_units, return_sequences=True, dropout=0.25))(x) # x = Bidirectional(LSTM(lstm_units, return_sequences=True, dropout=0.25))(x) # dropout>0 menonaktifkan kernel cuDNN. Untuk memaksimalkan GPU: # set dropout=0.0 dan recurrent_dropout=0.0 # biarkan activation='tanh' & recurrent_activation='sigmoid' (default) # unroll=False (default) x = Bidirectional(tf.keras.layers.LSTM( 128, return_sequences=True, dropout=0.0, recurrent_dropout=0.0 ))(x) x = Bidirectional(tf.keras.layers.LSTM( 128, return_sequences=True, dropout=0.0, recurrent_dropout=0.0 ))(x) # Output layer x = Dense(num_classes, activation='softmax', name='predictions')(x) # Model definition model = Model(inputs=input_tensor, outputs=x) # CTC Loss function – TANPA slicing # ganti dtypes ke int32 labels = tf.keras.Input(name='labels', shape=(None,), dtype='int32') input_length= tf.keras.Input(name='input_length', shape=(1,), dtype='int32') label_length= tf.keras.Input(name='label_length', shape=(1,), dtype='int32') def ctc_lambda_func(args): y_pred, labels_t, in_len, lab_len = args # jangan slicing y_pred return tf.keras.backend.ctc_batch_cost(labels_t, y_pred, in_len, lab_len) ctc_loss_output = tf.keras.layers.Lambda( ctc_lambda_func, output_shape=(1,), name='ctc_loss', dtype='float32' # pastikan loss float32 )([x, labels, input_length, label_length]) # Model with CTC loss model_with_ctc = Model(inputs=[input_tensor, labels, input_length, label_length], outputs=ctc_loss_output) # Compile the model model_with_ctc.compile(loss={'ctc_loss': lambda y_true, y_pred: y_pred}, optimizer='adam') # opt = tf.keras.optimizers.Adam(1e-3, clipnorm=5.0) # model_with_ctc.compile( # loss={'ctc_loss': lambda y_true, y_pred: y_pred}, # optimizer=opt, # # jit_compile=True, # <<— aktifkan XLA (TF >= 2.9 / Keras 3) # jit_compile=False, # <<— aktifkan XLA (TF >= 2.9 / Keras 3) # ) model.summary() from torchvision import transforms as T from torchvision.transforms import InterpolationMode import tensorflow as tf # 1) Transform ke 50x250 (tanpa distorsi) transform = transforms.Compose([ transforms.Resize((50, 250), interpolation=InterpolationMode.BILINEAR, antialias=True), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), ]) CHARSET = list("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ") # forward mapping: no UNK, no mask char_to_num = tf.keras.layers.StringLookup( vocabulary=CHARSET, oov_token=None, mask_token=None, # no mask num_oov_indices=0 # no UNK ) # inverse mapping: JANGAN set oov_token num_to_char = tf.keras.layers.StringLookup( vocabulary=CHARSET, # pakai CHARSET langsung invert=True, num_oov_indices=0, # penting mask_token=None, ) print("vocab size:", len(char_to_num.get_vocabulary())) # -> 36 print(char_to_num.get_vocabulary()) # -> ['0','1',...,'Z'] print(num_to_char.get_vocabulary()) # -> ['0','1',...,'Z'] class DataGenerator(tf.keras.utils.Sequence): def __init__(self, dataframe, char_to_num, batch_size=32, img_width=250, img_height=50, max_label_length=5): self.dataframe = dataframe.reset_index(drop=True) self.char_to_num = char_to_num self.batch_size = batch_size self.img_width = img_width self.img_height = img_height self.max_label_length = max_label_length # time-steps setelah 3x MaxPool(2,2) di sumbu lebar self.time_steps = self.img_width // 8 # 250 // 8 = 31 self.on_epoch_end() def __len__(self): return len(self.dataframe) // self.batch_size # drop last def __getitem__(self, index): start_index = index * self.batch_size end_index = (index + 1) * self.batch_size batch_df = self.dataframe.iloc[start_index:end_index] images = [] labels = [] input_lengths = np.full((len(batch_df), 1), self.time_steps, dtype=np.int64) label_lengths = [] for _, row in batch_df.iterrows(): # 1) Load & preprocess image -> (H,W,1) float32 img = Image.open(row.filepath).convert("L") t = transform(img) # torch tensor (1,H,W), normalized [-1,1] arr = t.permute(1, 2, 0).numpy() # -> (H,W,1) images.append(arr) # 2) Encode label (UPPERCASE), pad -1, dtype int32 lab = row.label.upper() lab_ids = self.char_to_num(tf.constant(list(lab))).numpy().astype(np.int32) pad_len = self.max_label_length - len(lab_ids) if pad_len < 0: lab_ids = lab_ids[:self.max_label_length] pad_len = 0 lab_ids = np.pad(lab_ids, (0, pad_len), mode="constant", constant_values=-1) labels.append(lab_ids) # 3) label_length asli (tanpa padding) label_lengths.append([len(lab)]) images = np.asarray(images, dtype=np.float32) # (B,H,W,1) labels = np.asarray(labels, dtype=np.int32) # (B,L) label_lengths = np.asarray(label_lengths, dtype=np.int64) # (B,1) inputs = { 'input': images, 'labels': labels, 'input_length': input_lengths, 'label_length': label_lengths } # dummy target; loss dihitung di Lambda outputs = np.zeros((images.shape[0],), dtype=np.float32) return inputs, outputs def on_epoch_end(self): self.dataframe = self.dataframe.sample(frac=1.0).reset_index(drop=True) # Instantiate the data generators train_generator = DataGenerator(train_df, char_to_num, batch_size=32, max_label_length=5) val_generator = DataGenerator(val_df, char_to_num, batch_size=32, max_label_length=5) import numpy as np # cek isian # ambil batch pertama (inputs, outputs) = train_generator[0] x = inputs['input'] # (B, 50, 250, 1), float32, ~[-1,1] y = inputs['labels'] # (B, 5), int32, pad = -1 inlen = inputs['input_length'] # (B, 1) == 31 lablen = inputs['label_length'] # (B, 1) == 5 print("x:", x.shape, x.dtype, x.min(), x.max()) print("labels:", y.shape, y.dtype, "unique pads:", sorted(set(y.flatten()) - set(range(0,36)))[:5]) print("input_length uniq:", set(inlen.flatten().tolist())) print("label_length uniq:", set(lablen.flatten().tolist())) print("outputs (dummy):", outputs.shape, outputs.dtype) # assert sanity assert x.shape[1:] == (50, 250, 1) assert y.shape[1] == 5 assert inlen.min() == inlen.max() == 31 assert lablen.min() >= 1 and lablen.max() <= 5 assert y.dtype == np.int32 # CEK CTC DECODING # 1) pastikan semua id label ada di rentang 0..35 assert y.min() >= 0 and y.max() <= 35, f"Label di luar rentang 0..35: min={y.min()}, max={y.max()}" # 2) quick CTC loss test (harus finite, bukan NaN/Inf) yp = model.predict(x[:4], verbose=0) # (4, 31, 37) loss = tf.keras.backend.ctc_batch_cost(y[:4], yp, inlen[:4], lablen[:4]).numpy() print("CTC sample loss:", loss) # cek semua np.isfinite(loss) assert np.all(np.isfinite(loss)), f"CTC loss non-finite: {loss}" # 3) (opsional) decode balik 3 label GT buat sanity check mapping CHARSET = np.array(list("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ")) def decode_ids_row_np(ids_1d): ids_1d = [int(t) for t in ids_1d if int(t) >= 0] # buang padding return "".join(CHARSET[ids_1d]) if ids_1d else "" for i in range(3): print(i, "GT:", decode_ids_row_np(y[i])) """SIMPAN TIAP EPOCH""" import os, re, glob from pathlib import Path import tensorflow as tf from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint # ====== Paths ====== CKPT_DIR = Path("/workspace") CKPT_DIR.mkdir(parents=True, exist_ok=True) BEST_PATH = CKPT_DIR / "captcha_best.weights.h5" EPOCH_PATH = CKPT_DIR / "captcha_ep{epoch:03d}.weights.h5" # <-- setiap epoch # ====== Callbacks ====== # 1) Simpan "best" berdasarkan val_loss ckpt_best = ModelCheckpoint( filepath=str(BEST_PATH), monitor="val_loss", save_best_only=True, save_weights_only=True, save_freq="epoch", verbose=1, ) # 2) Simpan SETIAP EPOCH ckpt_every_epoch = ModelCheckpoint( filepath=str(EPOCH_PATH), save_best_only=False, # <-- wajib False untuk setiap epoch save_weights_only=True, save_freq="epoch", # defaultnya juga 'epoch', ini eksplisit saja verbose=0, ) early_stopping = EarlyStopping( monitor="val_loss", patience=15, restore_best_weights=True, verbose=1, ) # ====== Resume logic ====== def find_latest_epoch_ckpt(dir_path: Path): files = glob.glob(str(dir_path / "captcha_ep*.weights.h5")) if not files: return None, None pairs = [] for f in files: m = re.search(r"captcha_ep(\d{3})\.weights\.h5$", os.path.basename(f)) if m: pairs.append((int(m.group(1)), f)) if not pairs: return None, None pairs.sort(key=lambda x: x[0]) return pairs[-1] # (epoch, path) initial_epoch = 0 ep, last_path = find_latest_epoch_ckpt(CKPT_DIR) if last_path: print(f"[RESUME] Loading weights from {last_path}") model_with_ctc.load_weights(last_path) initial_epoch = ep print(f"[RESUME] initial_epoch set to {initial_epoch}") elif BEST_PATH.exists(): print(f"[RESUME] Loading BEST weights from {BEST_PATH}") model_with_ctc.load_weights(str(BEST_PATH)) initial_epoch = 0 else: print("[RESUME] No checkpoint found. Starting from scratch.") # ====== Fit ====== history = model_with_ctc.fit( train_generator, validation_data=val_generator, epochs=100, # balikin ke target kamu # epochs=10, # balikin ke target kamu initial_epoch=initial_epoch, callbacks=[ckpt_best, ckpt_every_epoch, early_stopping], verbose=1, ) # (Opsional) simpan bobot final & model inference model_with_ctc.save_weights(str(CKPT_DIR / "captcha_final.weights.h5")) model.save(str(CKPT_DIR / "captcha_final_model_base.h5")) # model inference (tanpa Lambda CTC) model.save(str(CKPT_DIR / "captcha_final_model_base.keras"))