|  |  | 
					
						
						|  |  | 
					
						
						|  | """ HunYuan model configuration""" | 
					
						
						|  | from torch import nn | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  | from typing import List, Union, Optional | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HunYuanConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`HunYuanModel`]. It is used to instantiate an | 
					
						
						|  | HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration | 
					
						
						|  | with the defaults will yield a similar configuration to that of the HunYuan-7B. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 32000): | 
					
						
						|  | Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`HunYuanModel`] | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 11008): | 
					
						
						|  | Dimension of the MLP representations or shared MLP representations. | 
					
						
						|  | moe_intermediate_size (`int` or `List`, *optional*, defaults to 11008): | 
					
						
						|  | Dimension of the MLP representations in MoE. Use a list if you want a different size per layer. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of hidden layers in the Transformer decoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer decoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | 
					
						
						|  | `num_attention_heads`. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 2048): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | rms_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | pad_token_id (`int`, *optional*): | 
					
						
						|  | Padding token id. | 
					
						
						|  | bos_token_id (`int`, *optional*, defaults to 1): | 
					
						
						|  | Beginning of stream token id. | 
					
						
						|  | eos_token_id (`int`, *optional*, defaults to 2): | 
					
						
						|  | End of stream token id. | 
					
						
						|  | pretraining_tp (`int`, *optional*, defaults to 1): | 
					
						
						|  | Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | 
					
						
						|  | document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is | 
					
						
						|  | necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | 
					
						
						|  | issue](https://github.com/pytorch/pytorch/issues/76232). | 
					
						
						|  | tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to tie weight embeddings | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  | rope_scaling (`Dict`, *optional*): | 
					
						
						|  | Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | 
					
						
						|  | strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | 
					
						
						|  | `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | 
					
						
						|  | `max_position_embeddings` to the expected new maximum. See the following thread for more information on how | 
					
						
						|  | these scaling strategies behave: | 
					
						
						|  | https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an | 
					
						
						|  | experimental feature, subject to breaking API changes in future versions. | 
					
						
						|  | attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to use a bias in the query, key, value and output projection layers during self-attention. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | use_qk_norm (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether query and key in attention use norm | 
					
						
						|  | use_cla (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to use CLA in attention | 
					
						
						|  | cla_share_factor (`int`, *optional*, defaults to 1): | 
					
						
						|  | The share factor of CLA | 
					
						
						|  | num_experts (`int` or `List`, *optional*, defaults to 1): | 
					
						
						|  | The number of experts for moe. If it is a list, it will be used as the number of experts for each layer. | 
					
						
						|  | num_shared_expert (`int` or `List`, *optional*, defaults to 1): | 
					
						
						|  | The number of shared experts for moe. If it is a list, it will be used as the number of shared experts for each layer. | 
					
						
						|  | moe_topk (`int` or `List`, *optional*, defaults to 1): | 
					
						
						|  | The topk value for moe. If it is a list, it will be used as the topk value for each layer. | 
					
						
						|  | capacity_factor (Not used) (`float` or `List`, *optional*, defaults to 1.0): | 
					
						
						|  | The capacity factor for moe. If it is a list, it will be used as the capacity factor for each layer. | 
					
						
						|  | moe_layer_num_skipped (`int`, *optional*, defaults to 0): | 
					
						
						|  | First moe_layer_num_skipped layers do not use MoE. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_type = "hunyuan" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=290943, | 
					
						
						|  | org_vocab_size=290943, | 
					
						
						|  | hidden_size=4096, | 
					
						
						|  | intermediate_size: int=11008, | 
					
						
						|  | moe_intermediate_size: Union[int, List]=None, | 
					
						
						|  | num_hidden_layers=32, | 
					
						
						|  | num_attention_heads=32, | 
					
						
						|  | num_key_value_heads=None, | 
					
						
						|  | attention_head_dim=None, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-5, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | pad_token_id=0, | 
					
						
						|  | bos_token_id=1, | 
					
						
						|  | eos_token_id=2, | 
					
						
						|  | eod_token_id=3, | 
					
						
						|  | sep_token_id=4, | 
					
						
						|  | im_start_id=5, | 
					
						
						|  | im_end_id=6, | 
					
						
						|  | text_start_id=7, | 
					
						
						|  | text_end_id=8, | 
					
						
						|  | image_token_id=9, | 
					
						
						|  | video_start_id=10, | 
					
						
						|  | video_end_id=11, | 
					
						
						|  | im_newline_id=12, | 
					
						
						|  | mask_init_id=13, | 
					
						
						|  | pretraining_tp=1, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | rope_theta=10000.0, | 
					
						
						|  | rope_scaling=None, | 
					
						
						|  | attention_bias=False, | 
					
						
						|  | mlp_bias=False, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | use_qk_norm=False, | 
					
						
						|  | use_rotary_pos_emb=True, | 
					
						
						|  | use_cla=False, | 
					
						
						|  | cla_share_factor=1, | 
					
						
						|  | norm_type="hf_rms", | 
					
						
						|  | num_experts: Union[int, List]=1, | 
					
						
						|  | use_mixed_mlp_moe=False, | 
					
						
						|  | num_shared_expert: Union[int, List]=1, | 
					
						
						|  | moe_topk: Union[int, List]=1, | 
					
						
						|  |  | 
					
						
						|  | moe_drop_tokens=False, | 
					
						
						|  | moe_random_routing_dropped_token=False, | 
					
						
						|  | use_mla=False, | 
					
						
						|  | kv_lora_rank=512, | 
					
						
						|  | q_lora_rank=1536, | 
					
						
						|  | qk_rope_head_dim=64, | 
					
						
						|  | v_head_dim=128, | 
					
						
						|  | qk_nope_head_dim=128, | 
					
						
						|  | moe_layer_num_skipped=0, | 
					
						
						|  | norm_topk_prob=True, | 
					
						
						|  | routed_scaling_factor=1.0, | 
					
						
						|  | group_limited_greedy=False, | 
					
						
						|  | n_group=None, | 
					
						
						|  | topk_group=None, | 
					
						
						|  | vit_path=None, | 
					
						
						|  | num_media_embeds=257, | 
					
						
						|  | vit_type="AnyResVit", | 
					
						
						|  | vit_input_resolution=224, | 
					
						
						|  | vit_token=64, | 
					
						
						|  | vit_patch=1, | 
					
						
						|  | vit_mapping_type="simple_conv_mlp", | 
					
						
						|  | vit_norm_type="fused", | 
					
						
						|  | vit_used_rms_norm=True, | 
					
						
						|  | vit_remove_prenorm=True, | 
					
						
						|  | vit_add_patchemb_bias=True, | 
					
						
						|  | anyres_vit_max_image_size=2048, | 
					
						
						|  | anyres_pooling_size=2, | 
					
						
						|  | anyres_vit_two_views=False, | 
					
						
						|  | skip_cls_token=False, | 
					
						
						|  | position_embedding_xdrope=False, | 
					
						
						|  | xdrope_section=None, | 
					
						
						|  | add_classification_head=False, | 
					
						
						|  | class_num=0, | 
					
						
						|  | pool_type="last", | 
					
						
						|  | pad_id=-1, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.org_vocab_size = org_vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.moe_intermediate_size = moe_intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.num_experts = num_experts | 
					
						
						|  | self.use_mixed_mlp_moe = use_mixed_mlp_moe | 
					
						
						|  | self.num_shared_expert = num_shared_expert | 
					
						
						|  | self.moe_topk = moe_topk | 
					
						
						|  |  | 
					
						
						|  | self.moe_drop_tokens = moe_drop_tokens | 
					
						
						|  | self.moe_random_routing_dropped_token = moe_random_routing_dropped_token | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is not None: | 
					
						
						|  | self.attention_head_dim = attention_head_dim | 
					
						
						|  | else: | 
					
						
						|  | self.attention_head_dim = self.hidden_size // num_attention_heads | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  | self.pretraining_tp = pretraining_tp | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.rope_scaling = rope_scaling | 
					
						
						|  |  | 
					
						
						|  | self.attention_bias = attention_bias | 
					
						
						|  | self.mlp_bias = mlp_bias | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.use_qk_norm = use_qk_norm | 
					
						
						|  | self.use_rotary_pos_emb = use_rotary_pos_emb | 
					
						
						|  | self.use_cla = use_cla | 
					
						
						|  | self.cla_share_factor = cla_share_factor | 
					
						
						|  | self.norm_type = norm_type | 
					
						
						|  |  | 
					
						
						|  | self.use_mla = use_mla | 
					
						
						|  | self.kv_lora_rank = kv_lora_rank | 
					
						
						|  | self.q_lora_rank = q_lora_rank | 
					
						
						|  | self.qk_rope_head_dim = qk_rope_head_dim | 
					
						
						|  | self.qk_nope_head_dim = qk_nope_head_dim | 
					
						
						|  | self.v_head_dim = v_head_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.moe_layer_num_skipped = moe_layer_num_skipped | 
					
						
						|  | self.norm_topk_prob = norm_topk_prob | 
					
						
						|  | self.routed_scaling_factor = routed_scaling_factor | 
					
						
						|  | self.group_limited_greedy = group_limited_greedy | 
					
						
						|  | self.n_group = n_group | 
					
						
						|  | self.topk_group = topk_group | 
					
						
						|  | self.add_classification_head = add_classification_head | 
					
						
						|  | self.class_num = class_num | 
					
						
						|  | self.pool_type = pool_type | 
					
						
						|  | self.pad_id = pad_id | 
					
						
						|  |  | 
					
						
						|  | if self.class_num is not None: | 
					
						
						|  | self.dense_list = [self.hidden_size, self.class_num] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.vit_path = vit_path | 
					
						
						|  | self.num_media_embeds = num_media_embeds | 
					
						
						|  | self.vit_type = vit_type | 
					
						
						|  | self.vit_input_resolution = vit_input_resolution | 
					
						
						|  | self.vit_token = vit_token | 
					
						
						|  | self.vit_patch = vit_patch | 
					
						
						|  | self.vit_mapping_type = vit_mapping_type | 
					
						
						|  | self.vit_norm_type = vit_norm_type | 
					
						
						|  | self.vit_used_rms_norm = vit_used_rms_norm | 
					
						
						|  | self.vit_remove_prenorm = vit_remove_prenorm | 
					
						
						|  | self.vit_add_patchemb_bias = vit_add_patchemb_bias | 
					
						
						|  | self.anyres_vit_max_image_size = anyres_vit_max_image_size | 
					
						
						|  | self.anyres_pooling_size = anyres_pooling_size | 
					
						
						|  | self.anyres_vit_two_views = anyres_vit_two_views | 
					
						
						|  | self.skip_cls_token = skip_cls_token | 
					
						
						|  | self.position_embedding_xdrope = position_embedding_xdrope | 
					
						
						|  | self.xdrope_section = xdrope_section | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.eod_token_id = eod_token_id | 
					
						
						|  | self.im_start_id = im_start_id | 
					
						
						|  | self.im_end_id = im_end_id | 
					
						
						|  | self.text_start_id = text_start_id | 
					
						
						|  | self.text_end_id = text_end_id | 
					
						
						|  | self.image_token_id = image_token_id | 
					
						
						|  | self.video_start_id = video_start_id | 
					
						
						|  | self.video_end_id = video_end_id | 
					
						
						|  | self.im_newline_id = im_newline_id | 
					
						
						|  | self.mask_init_id = mask_init_id | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | pad_token_id=pad_token_id, | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | sep_token_id=sep_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _rope_scaling_validation(self): | 
					
						
						|  | """ | 
					
						
						|  | Validate the `rope_scaling` configuration. | 
					
						
						|  | """ | 
					
						
						|  | if self.rope_scaling is None: | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`rope_scaling` must be a dictionary with with two fields, `type` and `factor` or `type` and `alpha`, " | 
					
						
						|  | f"got {self.rope_scaling}" | 
					
						
						|  | ) | 
					
						
						|  | rope_scaling_type = self.rope_scaling.get("type", None) | 
					
						
						|  | rope_scaling_factor = self.rope_scaling.get("factor", None) | 
					
						
						|  | rope_scaling_alpha = self.rope_scaling.get("alpha", None) | 
					
						
						|  | if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | 
					
						
						|  | ) | 
					
						
						|  | if rope_scaling_factor is None and rope_scaling_alpha is None: | 
					
						
						|  | raise ValueError("`rope_scaling`'s factor or alpha field must be have one, got both of none") | 
					
						
						|  | if rope_scaling_factor is not None: | 
					
						
						|  | if not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | 
					
						
						|  | raise ValueError(f"`rope_scaling`'s factor field must be a float > 1.0, got {rope_scaling_factor}") | 
					
						
						|  | if rope_scaling_alpha is not None: | 
					
						
						|  | if not isinstance(rope_scaling_alpha, float) or rope_scaling_alpha <= 1.0: | 
					
						
						|  | raise ValueError(f"`rope_scaling`'s alpha field must be a float > 1.0, got {rope_scaling_alpha}") | 
					
						
						|  |  |