File size: 10,397 Bytes
a24db0c
 
 
 
aca9fb2
a24db0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f495fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2451860
f495fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a24db0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c49c2b
 
f495fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c49c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
import torch.nn as nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import MaskedLMOutput
from .configuration_nicheformer import NicheformerConfig
import math

class PositionalEncoding(nn.Module):
    """Positional encoding using sine and cosine functions."""

    def __init__(self, d_model: int, max_seq_len: int):
        super().__init__()
        encoding = torch.zeros(max_seq_len, d_model)
        position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))

        encoding[:, 0::2] = torch.sin(position * div_term)
        encoding[:, 1::2] = torch.cos(position * div_term)
        encoding = encoding.unsqueeze(0)

        self.register_buffer('encoding', encoding, persistent=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Add positional encoding to input tensor."""
        return x + self.encoding[:, :x.size(1)]

class NicheformerPreTrainedModel(PreTrainedModel):
    """Base class for Nicheformer models."""
    
    config_class = NicheformerConfig
    base_model_prefix = "nicheformer"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            nn.init.xavier_normal_(module.weight)
            if module.bias is not None:
                nn.init.zeros_(module.bias)

class NicheformerModel(NicheformerPreTrainedModel):
    def __init__(self, config: NicheformerConfig):
        super().__init__(config)
        
        # Core transformer components
        self.encoder_layer = nn.TransformerEncoderLayer(
            d_model=config.dim_model,
            nhead=config.nheads,
            dim_feedforward=config.dim_feedforward,
            batch_first=config.batch_first,
            dropout=config.dropout,
            layer_norm_eps=1e-12
        )
        self.encoder = nn.TransformerEncoder(
            encoder_layer=self.encoder_layer,
            num_layers=config.nlayers,
            enable_nested_tensor=False
        )

        # Embedding layers
        self.embeddings = nn.Embedding(
            num_embeddings=config.n_tokens+5,
            embedding_dim=config.dim_model,
            padding_idx=1
        )

        if config.learnable_pe:
            self.positional_embedding = nn.Embedding(
                num_embeddings=config.context_length,
                embedding_dim=config.dim_model
            )
            self.dropout = nn.Dropout(p=config.dropout)
            self.register_buffer('pos', torch.arange(0, config.context_length, dtype=torch.long))
        else:
            self.positional_embedding = PositionalEncoding(
                d_model=config.dim_model,
                max_seq_len=config.context_length
            )

        # Initialize weights
        self.post_init()

    def forward(self, input_ids, attention_mask=None):
        token_embedding = self.embeddings(input_ids)

        if self.config.learnable_pe:
            pos_embedding = self.positional_embedding(self.pos.to(token_embedding.device))
            embeddings = self.dropout(token_embedding + pos_embedding)
        else:
            embeddings = self.positional_embedding(token_embedding)

        # Convert attention_mask to boolean and invert it for transformer's src_key_padding_mask
        # True indicates positions that will be masked
        if attention_mask is not None:
            attention_mask = ~attention_mask.bool()

        transformer_output = self.encoder(
            embeddings,
            src_key_padding_mask=attention_mask if attention_mask is not None else None,
            is_causal=False
        )

        return transformer_output
        
    def get_embeddings(self, input_ids, attention_mask=None, layer: int = -1, with_context: bool = False) -> torch.Tensor:
        """Get embeddings from the model.
        
        Args:
            input_ids: Input token IDs
            attention_mask: Attention mask
            layer: Which transformer layer to extract embeddings from (-1 means last layer)
            with_context: Whether to include context tokens in the embeddings
            
        Returns:
            torch.Tensor: Embeddings tensor
        """
        # Get token embeddings and positional encodings
        token_embedding = self.embeddings(input_ids)
        
        if self.config.learnable_pe:
            pos_embedding = self.positional_embedding(self.pos.to(token_embedding.device))
            embeddings = self.dropout(token_embedding + pos_embedding)
        else:
            embeddings = self.positional_embedding(token_embedding)

        # Process through transformer layers up to desired layer
        if layer < 0:
            layer = self.config.nlayers + layer  # -1 means last layer

        # Convert attention_mask to boolean and invert it for transformer's src_key_padding_mask
        if attention_mask is not None:
            padding_mask = ~attention_mask.bool()
        else:
            padding_mask = None

        # Process through each layer up to the desired one
        for i in range(layer + 1):
            embeddings = self.encoder.layers[i](
                embeddings,
                src_key_padding_mask=padding_mask,
                is_causal=False
            )

        # Remove context tokens (first 3 tokens) if not needed
        if not with_context:
            embeddings = embeddings[:, 3:, :]

        # Mean pooling over sequence dimension
        embeddings = embeddings.mean(dim=1)

        return embeddings

class NicheformerForMaskedLM(NicheformerPreTrainedModel):
    def __init__(self, config: NicheformerConfig):
        super().__init__(config)
        
        self.nicheformer = NicheformerModel(config)
        self.classifier_head = nn.Linear(config.dim_model, config.n_tokens, bias=False)
        self.classifier_head.bias = nn.Parameter(torch.zeros(config.n_tokens))
        
        # Initialize weights
        self.post_init()

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        labels=None,
        return_dict=None,
        apply_masking=False,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Apply masking if requested (typically during training)
        if apply_masking:
            batch = {
                'input_ids': input_ids,
                'attention_mask': attention_mask
            }
            masked_batch = complete_masking(batch, self.config.masking_p, self.config.n_tokens)
            input_ids = masked_batch['masked_indices']
            labels = masked_batch['input_ids']  # Original tokens become labels
            mask = masked_batch['mask']
            # Only compute loss on masked tokens and ensure labels are long
            labels = torch.where(mask, labels, torch.tensor(-100, device=labels.device)).long()

        transformer_output = self.nicheformer(
            input_ids=input_ids,
            attention_mask=attention_mask,
        )

        prediction_scores = self.classifier_head(transformer_output)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            masked_lm_loss = loss_fct(
                prediction_scores.view(-1, self.config.n_tokens),
                labels.view(-1)
            )

        if not return_dict:
            output = (prediction_scores,) + (transformer_output,)
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=transformer_output,
        ) 
        
    def get_embeddings(self, input_ids, attention_mask=None, layer: int = -1, with_context: bool = False) -> torch.Tensor:
        """Get embeddings from the model.
        
        Args:
            input_ids: Input token IDs
            attention_mask: Attention mask
            layer: Which transformer layer to extract embeddings from (-1 means last layer)
            with_context: Whether to include context tokens in the embeddings
            
        Returns:
            torch.Tensor: Embeddings tensor
        """
        return self.nicheformer.get_embeddings(
            input_ids=input_ids,
            attention_mask=attention_mask,
            layer=layer,
            with_context=with_context
        )

def complete_masking(batch, masking_p, n_tokens):
    """Apply masking to input batch for masked language modeling.

    Args:
        batch (dict): Input batch containing 'input_ids' and 'attention_mask'
        masking_p (float): Probability of masking a token
        n_tokens (int): Total number of tokens in vocabulary

    Returns:
        dict: Batch with masked indices and masking information
    """
    device = batch['input_ids'].device
    input_ids = batch['input_ids']
    attention_mask = batch['attention_mask']

    # Create mask tensor (1 for tokens to be masked, 0 otherwise)
    prob = torch.rand(input_ids.shape, device=device)
    mask = (prob < masking_p) & (input_ids != PAD_TOKEN) & (input_ids != CLS_TOKEN)

    # For masked tokens:
    # - 80% replace with MASK token
    # - 10% replace with random token
    # - 10% keep unchanged
    masked_indices = input_ids.clone()

    # Calculate number of tokens to be masked
    num_tokens_to_mask = mask.sum().item()

    # Determine which tokens get which type of masking
    mask_mask = torch.rand(num_tokens_to_mask, device=device) < 0.8
    random_mask = (torch.rand(num_tokens_to_mask, device=device) < 0.5) & ~mask_mask

    # Apply MASK token (80% of masked tokens)
    masked_indices[mask] = torch.where(
        mask_mask,
        torch.tensor(MASK_TOKEN, device=device, dtype=torch.long),
        masked_indices[mask]
    )
    
    # Apply random tokens (10% of masked tokens)
    random_tokens = torch.randint(
        3, n_tokens,  # Start from 3 to avoid special tokens
        (random_mask.sum(),),
        device=device,
        dtype=torch.long
    )
    masked_indices[mask][random_mask] = random_tokens
    
    # 10% remain unchanged
    
    return {
        'masked_indices': masked_indices,
        'attention_mask': attention_mask,
        'mask': mask,
        'input_ids': input_ids
    }