File size: 16,222 Bytes
14270a2 016773e be5c172 016773e a24db0c 211103a 5a0555b 016773e a24db0c 016773e a24db0c 14270a2 016773e a24db0c 211103a a24db0c 016773e 6326f97 a24db0c 016773e ec49fa4 016773e ec49fa4 016773e 211103a 016773e 6326f97 016773e ec49fa4 016773e 14270a2 016773e 14270a2 016773e 14270a2 016773e a24db0c 016773e a24db0c 016773e a24db0c 016773e a24db0c 016773e a24db0c 016773e a24db0c 016773e a24db0c 016773e 14270a2 6326f97 6ff8934 6326f97 6ff8934 016773e 6ff8934 016773e 6ff8934 5a0555b 6ff8934 a24db0c 5a0555b 6ff8934 a24db0c 5a0555b a24db0c 5a0555b a27a63d 5a0555b ac2a80e 5a0555b a27a63d ac2a80e 6ff8934 5a0555b 6ff8934 5a0555b 06e8dbd 6ff8934 5a0555b ac2a80e 016773e ac2a80e 6ff8934 ac2a80e 5a0555b ac2a80e 6ff8934 ac2a80e 5a0555b ac2a80e 5a0555b 016773e 8ac9ba0 5a0555b 016773e 5a0555b 8ac9ba0 5a0555b 8ac9ba0 016773e 5a0555b 016773e a24db0c 016773e 5a0555b 016773e 14270a2 016773e a24db0c 016773e be5c172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from typing import List, Dict, Optional, Union, Tuple
import numpy as np
from transformers import PreTrainedTokenizer
from dataclasses import dataclass
import torch
import anndata as ad
from scipy.sparse import issparse
import numba
import os
import json
from huggingface_hub import hf_hub_download
import pandas as pd
# Token IDs must match exactly with the original implementation
PAD_TOKEN = 0
MASK_TOKEN = 1
CLS_TOKEN = 2
# These mappings preserve the exact token IDs from the original implementation
MODALITY_DICT = {
'dissociated': 3,
'spatial': 4,
}
SPECIES_DICT = {
'human': 5,
'Homo sapiens': 5,
'Mus musculus': 6,
'mouse': 6,
}
TECHNOLOGY_DICT = {
"merfish": 7,
"MERFISH": 7,
"cosmx": 8,
"NanoString digital spatial profiling": 8,
"Xenium": 9,
"10x 5' v2": 10,
"10x 3' v3": 11,
"10x 3' v2": 12,
"10x 5' v1": 13,
"10x 3' v1": 14,
"10x 3' transcription profiling": 15,
"10x transcription profiling": 15,
"10x 5' transcription profiling": 16,
"CITE-seq": 17,
"Smart-seq v4": 18,
}
def sf_normalize(X: np.ndarray) -> np.ndarray:
"""Size factor normalize to 10k counts."""
X = X.copy()
counts = np.array(X.sum(axis=1))
# avoid zero division error
counts += counts == 0.
# normalize to 10000 counts
scaling_factor = 10000. / counts
if issparse(X):
from scipy.sparse import sparsefuncs
sparsefuncs.inplace_row_scale(X, scaling_factor)
else:
np.multiply(X, scaling_factor.reshape((-1, 1)), out=X)
return X
@numba.jit(nopython=True, nogil=True)
def _sub_tokenize_data(x: np.ndarray, max_seq_len: int = -1, aux_tokens: int = 30) -> np.ndarray:
"""Tokenize the input gene vector."""
scores_final = np.empty((x.shape[0], max_seq_len if max_seq_len > 0 else x.shape[1]))
for i, cell in enumerate(x):
nonzero_mask = np.nonzero(cell)[0]
sorted_indices = nonzero_mask[np.argsort(-cell[nonzero_mask])][:max_seq_len]
sorted_indices = sorted_indices + aux_tokens
if max_seq_len:
scores = np.zeros(max_seq_len, dtype=np.int32)
else:
scores = np.zeros_like(cell, dtype=np.int32)
scores[:len(sorted_indices)] = sorted_indices.astype(np.int32)
scores_final[i, :] = scores
return scores_final
class NicheformerTokenizer(PreTrainedTokenizer):
"""Tokenizer for Nicheformer that handles single-cell data."""
model_input_names = ["input_ids", "attention_mask"]
vocab_files_names = {"vocab_file": "vocab.json"}
modality_dict = MODALITY_DICT
species_dict = SPECIES_DICT
technology_dict = TECHNOLOGY_DICT
def _load_reference_model(self):
"""Load reference model for gene alignment."""
try:
# Get the model name or path from the tokenizer
repo_id = self.name_or_path if hasattr(self, "name_or_path") else "aletlvl/Nicheformer"
# Download the reference model if not already cached
model_path = hf_hub_download(repo_id=repo_id, filename="model.h5ad")
return ad.read_h5ad(model_path)
except Exception as e:
print(f"Warning: Could not load reference model: {e}")
return None
def __init__(
self,
vocab_file=None,
max_length: int = 1500,
aux_tokens: int = 30,
median_counts_per_gene: Optional[np.ndarray] = None,
gene_names: Optional[List[str]] = None,
technology_mean: Optional[Union[str, np.ndarray]] = None,
**kwargs
):
# Initialize base vocabulary
self._vocabulary = {
"[PAD]": PAD_TOKEN,
"[MASK]": MASK_TOKEN,
"[CLS]": CLS_TOKEN,
}
if vocab_file is not None:
with open(vocab_file, 'r') as f:
self._vocabulary.update(json.load(f))
else:
# Add modality tokens
for name, idx in self.modality_dict.items():
self._vocabulary[f"[MODALITY_{name}]"] = idx
# Add species tokens
for name, idx in self.species_dict.items():
if name in ["Homo sapiens", "Mus musculus"]:
continue # Skip redundant names
self._vocabulary[f"[SPECIES_{name}]"] = idx
# Add technology tokens
for name, idx in self.technology_dict.items():
if name in ["MERFISH", "10x transcription profiling"]:
continue # Skip redundant names
clean_name = name.lower().replace(" ", "_").replace("'", "_")
self._vocabulary[f"[TECH_{clean_name}]"] = idx
# Add gene tokens if provided
if gene_names is not None:
for i, gene in enumerate(gene_names):
self._vocabulary[gene] = i + aux_tokens
# Save vocabulary
os.makedirs('to_hf', exist_ok=True)
with open('to_hf/vocab.json', 'w') as f:
json.dump(self._vocabulary, f, indent=4)
super().__init__(**kwargs)
self.max_length = max_length
self.aux_tokens = aux_tokens
self.median_counts_per_gene = median_counts_per_gene
self.gene_names = gene_names
self.name_or_path = kwargs.get('name_or_path', 'aletlvl/Nicheformer')
# Set up special token mappings
self._pad_token = "[PAD]"
self._mask_token = "[MASK]"
self._cls_token = "[CLS]"
# Load technology mean if provided
self.technology_mean = None
if technology_mean is not None:
self._load_technology_mean(technology_mean)
def _load_technology_mean(self, technology_mean):
"""Load technology mean from file or array."""
if isinstance(technology_mean, str):
try:
self.technology_mean = np.load(technology_mean)
print(f"Loaded technology mean from {technology_mean} with shape {self.technology_mean.shape}")
except Exception as e:
print(f"Warning: Could not load technology mean from {technology_mean}: {e}")
elif isinstance(technology_mean, np.ndarray):
self.technology_mean = technology_mean
print(f"Using provided technology mean array with shape {self.technology_mean.shape}")
else:
print(f"Warning: Invalid technology_mean type: {type(technology_mean)}")
def get_vocab(self) -> Dict[str, int]:
"""Returns the vocabulary mapping."""
return self._vocabulary.copy()
def _tokenize(self, text: str) -> List[str]:
"""Tokenize text input."""
# This tokenizer doesn't handle text input directly
raise NotImplementedError("This tokenizer only works with gene expression data")
def _convert_token_to_id(self, token: str) -> int:
"""Convert token to ID."""
# First check special token mappings
if token in self.modality_dict:
return self.modality_dict[token]
if token in self.species_dict:
return self.species_dict[token]
if token in self.technology_dict:
return self.technology_dict[token]
# Then check vocabulary
return self._vocabulary.get(token, self._vocabulary["[PAD]"])
def _convert_id_to_token(self, index: int) -> str:
"""Convert ID to token."""
# First check special token mappings
for token, idx in self.modality_dict.items():
if idx == index:
return token
for token, idx in self.species_dict.items():
if idx == index:
return token
for token, idx in self.technology_dict.items():
if idx == index:
return token
# Then check vocabulary
for token, idx in self._vocabulary.items():
if idx == index:
return token
return "[PAD]"
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""Save the vocabulary to a file."""
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + "vocab.json"
)
with open(vocab_file, "w", encoding="utf-8") as f:
json.dump(self._vocabulary, f, ensure_ascii=False)
return (vocab_file,)
def _tokenize_gene_expression(self, x: np.ndarray) -> np.ndarray:
"""Tokenize gene expression matrix.
Args:
x: Gene expression matrix (cells x genes)
Returns:
Tokenized matrix
"""
# Handle sparse input
if issparse(x):
x = x.toarray()
# Normalize and scale
x = np.nan_to_num(x)
x = sf_normalize(x)
if self.median_counts_per_gene is not None:
median_counts = self.median_counts_per_gene.copy()
median_counts += median_counts == 0
x = x / median_counts.reshape((1, -1))
# Apply technology mean normalization if available
if self.technology_mean is not None and self.technology_mean.shape[0] == x.shape[1]:
# Avoid division by zero
safe_mean = np.maximum(self.technology_mean, 1e-6)
x = x / safe_mean
# Apply log1p transformation
x = np.log1p(x)
# Convert to tokens
tokens = _sub_tokenize_data(x, self.max_length, self.aux_tokens)
return tokens.astype(np.int32)
def __call__(self, data: Union[ad.AnnData, np.ndarray], **kwargs) -> Dict[str, torch.Tensor]:
"""Tokenize gene expression data.
Args:
data: AnnData object or numpy array of gene expression data
Returns:
Dictionary with input_ids and attention_mask tensors
"""
if isinstance(data, ad.AnnData):
adata = data.copy()
# Align with reference model if available
if hasattr(self, '_load_reference_model'):
reference_model = self._load_reference_model()
if reference_model is not None:
# Store original column types before concatenation
original_types = {}
for col in ['modality', 'specie', 'assay']:
if col in adata.obs.columns:
original_types[col] = adata.obs[col].dtype
# Concatenate and then remove the reference
adata = ad.concat([reference_model, adata], join='outer', axis=0)
adata = adata[1:]
# Restore original column types after concatenation
for col, dtype in original_types.items():
if col in adata.obs.columns:
try:
adata.obs[col] = adata.obs[col].astype(dtype)
except Exception as e:
print(f"Warning: Could not convert {col} back to {dtype}: {e}")
# Get gene expression data
X = adata.X
# Get metadata for special tokens
modality = adata.obs['modality'] if 'modality' in adata.obs.columns else None
species = adata.obs['specie'] if 'specie' in adata.obs.columns else None
technology = adata.obs['assay'] if 'assay' in adata.obs.columns else None
# Use integer values directly if available
if modality is not None:
try:
if pd.api.types.is_numeric_dtype(modality):
modality_tokens = modality.astype(int).tolist()
else:
modality_tokens = [self.modality_dict.get(m, self._vocabulary["[PAD]"]) for m in modality]
except Exception as e:
print(f"Warning: Error processing modality tokens: {e}")
modality_tokens = [self._vocabulary["[PAD]"]] * len(adata)
else:
modality_tokens = None
if species is not None:
try:
if pd.api.types.is_numeric_dtype(species):
species_tokens = species.astype(int).tolist()
else:
species_tokens = [self.species_dict.get(s, self._vocabulary["[PAD]"]) for s in species]
except Exception as e:
print(f"Warning: Error processing species tokens: {e}")
species_tokens = [self._vocabulary["[PAD]"]] * len(adata)
else:
species_tokens = None
if technology is not None:
try:
if pd.api.types.is_numeric_dtype(technology):
technology_tokens = technology.astype(int).tolist()
else:
technology_tokens = [self.technology_dict.get(t, self._vocabulary["[PAD]"]) for t in technology]
except Exception as e:
print(f"Warning: Error processing technology tokens: {e}")
technology_tokens = [self._vocabulary["[PAD]"]] * len(adata)
else:
technology_tokens = None
else:
X = data
modality_tokens = None
species_tokens = None
technology_tokens = None
# Tokenize gene expression data
token_ids = self._tokenize_gene_expression(X)
# Add special tokens if available - changed order to [species, technology, modality]
special_tokens = np.zeros((token_ids.shape[0], 3), dtype=np.int64)
special_token_mask = np.zeros((token_ids.shape[0], 3), dtype=bool)
if species_tokens is not None:
special_tokens[:, 0] = species_tokens
special_token_mask[:, 0] = True
if technology_tokens is not None:
special_tokens[:, 1] = technology_tokens
special_token_mask[:, 1] = True
if modality_tokens is not None:
special_tokens[:, 2] = modality_tokens
special_token_mask[:, 2] = True
# Only keep the special tokens that are present (have True in mask)
special_tokens = special_tokens[:, special_token_mask[0]]
if special_tokens.size > 0:
token_ids = np.concatenate([special_tokens, token_ids[:, :(self.max_length - special_tokens.shape[1])]], axis=1)
# Create attention mask
attention_mask = (token_ids != self._vocabulary["[PAD]"])
return {
"input_ids": torch.tensor(token_ids, dtype=torch.long),
"attention_mask": torch.tensor(attention_mask)
}
def get_vocab_size(self) -> int:
"""Get vocabulary size."""
if self.gene_names is not None:
return len(self.gene_names) + self.aux_tokens
return max(
max(self.modality_dict.values()),
max(self.species_dict.values()),
max(self.technology_dict.values())
) + 1
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Convert a sequence of tokens to a string. Not used for gene expression."""
raise NotImplementedError("This tokenizer only works with gene expression data")
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
"""Build model inputs from a sequence by adding special tokens."""
# For gene expression data, special tokens are handled in __call__
return token_ids_0
def get_special_tokens_mask(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) -> List[int]:
"""Get list where entries are [1] if a token is [special] else [0]."""
# Consider tokens < aux_tokens as special
return [1 if token_id < self.aux_tokens else 0 for token_id in token_ids_0] |