Update README.md
Browse files
README.md
CHANGED
|
@@ -5,12 +5,16 @@ tags:
|
|
| 5 |
- feature-extraction
|
| 6 |
- sentence-similarity
|
| 7 |
- transformers
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
| 12 |
|
| 13 |
-
This is a [sentence-transformers]
|
|
|
|
| 14 |
|
| 15 |
<!--- Describe your model here -->
|
| 16 |
|
|
@@ -28,12 +32,31 @@ Then you can use the model like this:
|
|
| 28 |
from sentence_transformers import SentenceTransformer
|
| 29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 30 |
|
| 31 |
-
model = SentenceTransformer(
|
| 32 |
embeddings = model.encode(sentences)
|
| 33 |
print(embeddings)
|
| 34 |
```
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
## Usage (HuggingFace Transformers)
|
| 39 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
|
@@ -54,8 +77,8 @@ def mean_pooling(model_output, attention_mask):
|
|
| 54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 55 |
|
| 56 |
# Load model from HuggingFace Hub
|
| 57 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 58 |
-
model = AutoModel.from_pretrained(
|
| 59 |
|
| 60 |
# Tokenize sentences
|
| 61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
@@ -126,4 +149,5 @@ SentenceTransformer(
|
|
| 126 |
|
| 127 |
## Citing & Authors
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
| 5 |
- feature-extraction
|
| 6 |
- sentence-similarity
|
| 7 |
- transformers
|
| 8 |
+
- negation
|
| 9 |
+
license: mit
|
| 10 |
+
language:
|
| 11 |
+
- en
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# NegMPNet
|
| 15 |
|
| 16 |
+
This is a negation-aware version of (all-mpnet-base-v2)[https://huggingface.co/sentence-transformers/all-mpnet-base-v2].
|
| 17 |
+
It is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 18 |
|
| 19 |
<!--- Describe your model here -->
|
| 20 |
|
|
|
|
| 32 |
from sentence_transformers import SentenceTransformer
|
| 33 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 34 |
|
| 35 |
+
model = SentenceTransformer("tum-nlp/NegMPNet")
|
| 36 |
embeddings = model.encode(sentences)
|
| 37 |
print(embeddings)
|
| 38 |
```
|
| 39 |
|
| 40 |
+
## Negation-awareness
|
| 41 |
+
This model has a better sensitivity towards negations compared to its base model. You can try it yourself:
|
| 42 |
+
```python
|
| 43 |
+
from sentence_transformers import SentenceTransformer, util
|
| 44 |
+
import torch
|
| 45 |
+
|
| 46 |
+
base_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
| 47 |
+
finetuned_model = SentenceTransformer("tum-nlp/NegMPNet")
|
| 48 |
+
|
| 49 |
+
def cos_similarities(references: list, candidates: list, model: SentenceTransformer, batch_size=8) -> torch.Tensor:
|
| 50 |
+
assert len(references) == len(candidates), "Number of references and candidates must be equal"
|
| 51 |
+
emb_ref = model.encode(references, batch_size=batch_size)
|
| 52 |
+
emb_cand = model.encode(candidates, batch_size=batch_size)
|
| 53 |
+
return torch.diag(util.cos_sim(emb_ref, emb_cand))
|
| 54 |
|
| 55 |
+
references = ["Ray charles is legendary.", "Ray charles is legendary"]
|
| 56 |
+
candidates = ["Ray charles is a legend.", "Ray charles isn't legendary."]
|
| 57 |
+
print(cos_similarities(references, candidates, base_model)) # prints tensor([0.9453, 0.8683]) -> no negation-awareness
|
| 58 |
+
print(cos_similarities(references, candidates, finetuned_model)) # prints tensor([0.9585, 0.4263]) -> sensitive to negation
|
| 59 |
+
```
|
| 60 |
|
| 61 |
## Usage (HuggingFace Transformers)
|
| 62 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
|
|
|
| 77 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 78 |
|
| 79 |
# Load model from HuggingFace Hub
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained("tum-nlp/NegMPNet")
|
| 81 |
+
model = AutoModel.from_pretrained("tum-nlp/NegMPNet")
|
| 82 |
|
| 83 |
# Tokenize sentences
|
| 84 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
| 149 |
|
| 150 |
## Citing & Authors
|
| 151 |
|
| 152 |
+
If you use our model, please cite our INLG 2023 paper:
|
| 153 |
+
tba
|