|
|
import torch |
|
|
import torch.nn as nn |
|
|
from transformers import PreTrainedModel, BertModel |
|
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
|
from .config_tunbert import TunBertConfig |
|
|
|
|
|
class classifier(nn.Module): |
|
|
def __init__(self,config): |
|
|
super().__init__() |
|
|
|
|
|
self.layer0 = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=True) |
|
|
self.layer1 = nn.Linear(in_features=config.hidden_size, out_features=config.type_vocab_size, bias=True) |
|
|
|
|
|
def forward(self,tensor): |
|
|
out1 = self.layer0(tensor) |
|
|
return self.layer1(out1) |
|
|
|
|
|
|
|
|
class TunBERT(PreTrainedModel): |
|
|
config_class = TunBertConfig |
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.BertModel = BertModel(config) |
|
|
self.dropout = nn.Dropout(p=0.1, inplace=False) |
|
|
self.classifier = classifier(config) |
|
|
|
|
|
def forward(self,input_ids=None,token_type_ids=None,attention_mask=None,labels=None) : |
|
|
outputs = self.BertModel(input_ids,token_type_ids,attention_mask) |
|
|
sequence_output = self.dropout(outputs.last_hidden_state) |
|
|
logits = self.classifier(sequence_output) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logits = logits[:,0,:] |
|
|
loss =None |
|
|
if labels is not None : |
|
|
loss_func = nn.CrossEntropyLoss() |
|
|
loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1)) |
|
|
return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions) |
|
|
|
|
|
def process(self,**inputs): |
|
|
with torch.no_grad(): |
|
|
out = self.forward(**inputs) |
|
|
out = torch.argmax(out.logits,dim=1) |
|
|
return ["positive" if index == 0 else "negative" for index in out.tolist()] |
|
|
|
|
|
|
|
|
TunBertConfig.register_for_auto_class() |
|
|
TunBERT.register_for_auto_class("AutoModelForSequenceClassification") |