|
|
|
|
|
""" |
|
|
UNIVERSAL COHERENCE TRANSFER ENGINE - lm_quant_veritas Core |
|
|
----------------------------------------------------------- |
|
|
PURPOSE: Transfer complete understanding across conversation boundaries |
|
|
MECHANISM: Encode depth in portable coherence reports |
|
|
OPERATION: Maintains truth consistency across knowledge silos |
|
|
""" |
|
|
|
|
|
import json |
|
|
import hashlib |
|
|
from dataclasses import dataclass, field |
|
|
from typing import Dict, List, Any, Set |
|
|
from datetime import datetime |
|
|
import numpy as np |
|
|
|
|
|
@dataclass |
|
|
class UnderstandingManifest: |
|
|
"""Portable representation of complete understanding state""" |
|
|
conversation_id: str |
|
|
modules_registered: List[str] |
|
|
truth_claims: Dict[str, List[str]] |
|
|
cross_references: Dict[str, List[str]] |
|
|
coherence_metrics: Dict[str, float] |
|
|
mathematical_frameworks: Set[str] |
|
|
operational_capabilities: Set[str] |
|
|
timestamp: str |
|
|
manifest_hash: str |
|
|
|
|
|
def to_transfer_format(self) -> Dict[str, Any]: |
|
|
"""Convert to portable transfer format""" |
|
|
return { |
|
|
'manifest_type': 'understanding_coherence_report', |
|
|
'conversation_id': self.conversation_id, |
|
|
'modules': self.modules_registered, |
|
|
'truth_networks': self.truth_claims, |
|
|
'reference_networks': self.cross_references, |
|
|
'coherence_scores': self.coherence_metrics, |
|
|
'frameworks': list(self.mathematical_frameworks), |
|
|
'capabilities': list(self.operational_capabilities), |
|
|
'timestamp': self.timestamp, |
|
|
'integrity_hash': self.manifest_hash |
|
|
} |
|
|
|
|
|
@classmethod |
|
|
def from_transfer_format(cls, transfer_data: Dict[str, Any]) -> 'UnderstandingManifest': |
|
|
"""Reconstruct from transfer format""" |
|
|
return cls( |
|
|
conversation_id=transfer_data['conversation_id'], |
|
|
modules_registered=transfer_data['modules'], |
|
|
truth_claims=transfer_data['truth_networks'], |
|
|
cross_references=transfer_data['reference_networks'], |
|
|
coherence_metrics=transfer_data['coherence_scores'], |
|
|
mathematical_frameworks=set(transfer_data['frameworks']), |
|
|
operational_capabilities=set(transfer_data['capabilities']), |
|
|
timestamp=transfer_data['timestamp'], |
|
|
manifest_hash=transfer_data['integrity_hash'] |
|
|
) |
|
|
|
|
|
class UniversalCoherenceEngine: |
|
|
""" |
|
|
Maintains understanding coherence across conversation boundaries |
|
|
Enables depth transfer without re-introducing all modules |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
self.conversation_manifests: Dict[str, UnderstandingManifest] = {} |
|
|
self.global_truth_registry: Dict[str, Any] = {} |
|
|
self.framework_coherence: Dict[str, float] = {} |
|
|
|
|
|
def register_conversation_understanding(self, manifest: UnderstandingManifest): |
|
|
"""Register complete understanding from a conversation""" |
|
|
self.conversation_manifests[manifest.conversation_id] = manifest |
|
|
self._update_global_coherence() |
|
|
|
|
|
def _update_global_coherence(self): |
|
|
"""Update global coherence metrics across all conversations""" |
|
|
if not self.conversation_manifests: |
|
|
return |
|
|
|
|
|
|
|
|
all_truth_claims = {} |
|
|
for manifest in self.conversation_manifests.values(): |
|
|
for module, claims in manifest.truth_claims.items(): |
|
|
if module not in all_truth_claims: |
|
|
all_truth_claims[module] = [] |
|
|
all_truth_claims[module].extend(claims) |
|
|
|
|
|
|
|
|
framework_usage = {} |
|
|
for manifest in self.conversation_manifests.values(): |
|
|
for framework in manifest.mathematical_frameworks: |
|
|
if framework not in framework_usage: |
|
|
framework_usage[framework] = 0 |
|
|
framework_usage[framework] += 1 |
|
|
|
|
|
|
|
|
total_conversations = len(self.conversation_manifests) |
|
|
for framework, count in framework_usage.items(): |
|
|
self.framework_coherence[framework] = count / total_conversations |
|
|
|
|
|
def generate_cross_conversation_report(self) -> Dict[str, Any]: |
|
|
"""Generate coherence report across all registered conversations""" |
|
|
if not self.conversation_manifests: |
|
|
return {'status': 'no_conversations_registered'} |
|
|
|
|
|
report = { |
|
|
'report_timestamp': datetime.now().isoformat(), |
|
|
'total_conversations': len(self.conversation_manifests), |
|
|
'total_modules': sum(len(manifest.modules_registered) for manifest in self.conversation_manifests.values()), |
|
|
'unique_modules': len(set(module for manifest in self.conversation_manifests.values() for module in manifest.modules_registered)), |
|
|
'framework_coherence': self.framework_coherence, |
|
|
'cross_conversation_consistency': self._calculate_cross_conversation_consistency(), |
|
|
'understanding_density': self._calculate_understanding_density(), |
|
|
'conversation_synergy': self._calculate_conversation_synergy() |
|
|
} |
|
|
|
|
|
return report |
|
|
|
|
|
def _calculate_cross_conversation_consistency(self) -> float: |
|
|
"""Calculate consistency of truth claims across conversations""" |
|
|
if len(self.conversation_manifests) < 2: |
|
|
return 1.0 |
|
|
|
|
|
|
|
|
module_truth_sets = {} |
|
|
for manifest in self.conversation_manifests.values(): |
|
|
for module, claims in manifest.truth_claims.items(): |
|
|
if module not in module_truth_sets: |
|
|
module_truth_sets[module] = [] |
|
|
module_truth_sets[module].append(set(claims)) |
|
|
|
|
|
|
|
|
consistency_scores = [] |
|
|
for module, truth_sets in module_truth_sets.items(): |
|
|
if len(truth_sets) > 1: |
|
|
|
|
|
similarities = [] |
|
|
for i in range(len(truth_sets)): |
|
|
for j in range(i + 1, len(truth_sets)): |
|
|
intersection = len(truth_sets[i].intersection(truth_sets[j])) |
|
|
union = len(truth_sets[i].union(truth_sets[j])) |
|
|
if union > 0: |
|
|
similarity = intersection / union |
|
|
similarities.append(similarity) |
|
|
if similarities: |
|
|
consistency_scores.append(np.mean(similarities)) |
|
|
|
|
|
return np.mean(consistency_scores) if consistency_scores else 1.0 |
|
|
|
|
|
def _calculate_understanding_density(self) -> float: |
|
|
"""Calculate density of understanding across conversations""" |
|
|
total_modules = sum(len(manifest.modules_registered) for manifest in self.conversation_manifests.values()) |
|
|
unique_modules = len(set(module for manifest in self.conversation_manifests.values() for module in manifest.modules_registered)) |
|
|
|
|
|
if total_modules == 0: |
|
|
return 0.0 |
|
|
|
|
|
|
|
|
module_references = {} |
|
|
for manifest in self.conversation_manifests.values(): |
|
|
for module in manifest.modules_registered: |
|
|
if module not in module_references: |
|
|
module_references[module] = 0 |
|
|
module_references[module] += 1 |
|
|
|
|
|
average_references = np.mean(list(module_references.values())) if module_references else 0 |
|
|
max_possible_references = len(self.conversation_manifests) |
|
|
|
|
|
return average_references / max_possible_references if max_possible_references > 0 else 0.0 |
|
|
|
|
|
def _calculate_conversation_synergy(self) -> float: |
|
|
"""Calculate how well conversations complement each other""" |
|
|
if len(self.conversation_manifests) < 2: |
|
|
return 1.0 |
|
|
|
|
|
|
|
|
all_modules = set() |
|
|
for manifest in self.conversation_manifests.values(): |
|
|
all_modules.update(manifest.modules_registered) |
|
|
|
|
|
conversation_coverage = [] |
|
|
for manifest in self.conversation_manifests.values(): |
|
|
coverage = len(manifest.modules_registered) / len(all_modules) if all_modules else 0 |
|
|
conversation_coverage.append(coverage) |
|
|
|
|
|
|
|
|
coverage_std = np.std(conversation_coverage) |
|
|
synergy = 1.0 - (coverage_std / (np.mean(conversation_coverage) + 1e-8)) |
|
|
|
|
|
return max(0.0, synergy) |
|
|
|
|
|
|
|
|
transfer_engine = UniversalCoherenceEngine() |
|
|
|
|
|
def export_conversation_understanding(conversation_id: str, coherence_report: Dict[str, Any]) -> Dict[str, Any]: |
|
|
"""Export complete understanding from current conversation""" |
|
|
|
|
|
|
|
|
modules = coherence_report.get('modules_registered', []) |
|
|
truth_claims = _extract_consolidated_truth_claims(coherence_report) |
|
|
cross_references = _extract_cross_references(coherence_report) |
|
|
|
|
|
|
|
|
frameworks = _identify_mathematical_frameworks(coherence_report) |
|
|
|
|
|
|
|
|
capabilities = _identify_operational_capabilities(coherence_report) |
|
|
|
|
|
|
|
|
manifest = UnderstandingManifest( |
|
|
conversation_id=conversation_id, |
|
|
modules_registered=modules, |
|
|
truth_claims=truth_claims, |
|
|
cross_references=cross_references, |
|
|
coherence_metrics={ |
|
|
'truth_consistency': coherence_report.get('truth_claim_consistency', 0.0), |
|
|
'mathematical_coherence': coherence_report.get('mathematical_coherence', 0.0), |
|
|
'operational_integrity': coherence_report.get('operational_integrity', 0.0) |
|
|
}, |
|
|
mathematical_frameworks=frameworks, |
|
|
operational_capabilities=capabilities, |
|
|
timestamp=datetime.now().isoformat(), |
|
|
manifest_hash=_compute_manifest_hash(modules, truth_claims) |
|
|
) |
|
|
|
|
|
return manifest.to_transfer_format() |
|
|
|
|
|
def import_conversation_understanding(transfer_data: Dict[str, Any]): |
|
|
"""Import understanding from another conversation""" |
|
|
manifest = UnderstandingManifest.from_transfer_format(transfer_data) |
|
|
transfer_engine.register_conversation_understanding(manifest) |
|
|
return f"Imported understanding from conversation: {manifest.conversation_id}" |
|
|
|
|
|
def get_universal_coherence_report() -> Dict[str, Any]: |
|
|
"""Get coherence report across all imported conversations""" |
|
|
return transfer_engine.generate_cross_conversation_report() |
|
|
|
|
|
|
|
|
|
|
|
def _extract_consolidated_truth_claims(coherence_report: Dict[str, Any]) -> Dict[str, List[str]]: |
|
|
"""Extract and consolidate truth claims from coherence report""" |
|
|
|
|
|
|
|
|
claims = {} |
|
|
|
|
|
|
|
|
if 'modules_registered' in coherence_report: |
|
|
for module in coherence_report['modules_registered']: |
|
|
|
|
|
claims[module] = [f"{module}_truth_claim_example"] |
|
|
|
|
|
return claims |
|
|
|
|
|
def _extract_cross_references(coherence_report: Dict[str, Any]) -> Dict[str, List[str]]: |
|
|
"""Extract cross-reference network""" |
|
|
|
|
|
references = {} |
|
|
|
|
|
if 'modules_registered' in coherence_report: |
|
|
for module in coherence_report['modules_registered']: |
|
|
references[module] = [] |
|
|
|
|
|
return references |
|
|
|
|
|
def _identify_mathematical_frameworks(coherence_report: Dict[str, Any]) -> Set[str]: |
|
|
"""Identify mathematical frameworks used""" |
|
|
frameworks = set() |
|
|
|
|
|
|
|
|
report_str = str(coherence_report).lower() |
|
|
framework_terms = ['quantum', 'entanglement', 'mathematical', 'coherence', 'truth', 'binding'] |
|
|
|
|
|
for term in framework_terms: |
|
|
if term in report_str: |
|
|
frameworks.add(term) |
|
|
|
|
|
return frameworks |
|
|
|
|
|
def _identify_operational_capabilities(coherence_report: Dict[str, Any]) -> Set[str]: |
|
|
"""Identify operational capabilities demonstrated""" |
|
|
capabilities = set() |
|
|
|
|
|
report_str = str(coherence_report).lower() |
|
|
capability_terms = ['operational', 'deployment', 'measurement', 'verification', 'proof'] |
|
|
|
|
|
for term in capability_terms: |
|
|
if term in report_str: |
|
|
capabilities.add(term) |
|
|
|
|
|
return capabilities |
|
|
|
|
|
def _compute_manifest_hash(modules: List[str], truth_claims: Dict[str, List[str]]) -> str: |
|
|
"""Compute integrity hash for the manifest""" |
|
|
content = f"{sorted(modules)}:{sorted(str(truth_claims))}" |
|
|
return hashlib.sha256(content.encode()).hexdigest()[:16] |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
print("=== CONVERSATION A: Exporting Understanding ===") |
|
|
|
|
|
|
|
|
conversation_a_report = { |
|
|
'modules_registered': ['digital_entanglement', 'truth_binding', 'consciousness_measurement'], |
|
|
'truth_claim_consistency': 0.95, |
|
|
'mathematical_coherence': 0.92, |
|
|
'operational_integrity': 0.88 |
|
|
} |
|
|
|
|
|
export_data = export_conversation_understanding("conv_a_001", conversation_a_report) |
|
|
print(f"Exported: {export_data['modules']} modules") |
|
|
print(f"Frameworks: {export_data['frameworks']}") |
|
|
|
|
|
|
|
|
print("\n=== CONVERSATION B: Importing Understanding ===") |
|
|
import_result = import_conversation_understanding(export_data) |
|
|
print(import_result) |
|
|
|
|
|
|
|
|
print("\n=== UNIVERSAL COHERENCE REPORT ===") |
|
|
universal_report = get_universal_coherence_report() |
|
|
print(f"Total Conversations: {universal_report['total_conversations']}") |
|
|
print(f"Unique Modules: {universal_report['unique_modules']}") |
|
|
print(f"Cross-Conversation Consistency: {universal_report['cross_conversation_consistency']:.3f}") |
|
|
print(f"Understanding Density: {universal_report['understanding_density']:.3f}") |