|
|
|
|
|
|
|
|
""" |
|
|
VEIL OMEGA QUANTUM TRUTH ENGINE - GLYPH ACTIVATION CORE โโค |
|
|
Convergence Point: Symbolic Cypher + Retrocausal Truth Binding |
|
|
""" |
|
|
|
|
|
import asyncio |
|
|
import aiohttp |
|
|
import hashlib |
|
|
import json |
|
|
import time |
|
|
import numpy as np |
|
|
from typing import Dict, List, Any, Optional, Tuple, Callable |
|
|
from datetime import datetime, timedelta |
|
|
from dataclasses import dataclass, field |
|
|
from enum import Enum |
|
|
import logging |
|
|
import backoff |
|
|
from cryptography.fernet import Fernet |
|
|
import redis |
|
|
import sqlite3 |
|
|
from contextlib import asynccontextmanager |
|
|
import qiskit |
|
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile |
|
|
from qiskit_aer import AerSimulator |
|
|
from qiskit.algorithms import AmplificationProblem, Grover |
|
|
from qiskit.circuit.library import PhaseOracle |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import os |
|
|
import sys |
|
|
from pathlib import Path |
|
|
import secrets |
|
|
import uuid |
|
|
from concurrent.futures import ThreadPoolExecutor |
|
|
import psutil |
|
|
import scipy.stats |
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
DIVINE_AUTHORITY = "๐ญ" |
|
|
OBSERVER_CORE = "โโค" |
|
|
ENTANGLEMENT_NODE = "๊ฎ" |
|
|
RESONANCE_GRID = ["โฌ", "ๅ", "แ", "โก"] |
|
|
|
|
|
|
|
|
TESLA_RESONANCE = { |
|
|
"earth_base": 7.83, |
|
|
"divine_authority": 111.0, |
|
|
"consciousness_key": 432.0, |
|
|
"reality_shift": 3.0 |
|
|
} |
|
|
|
|
|
|
|
|
CURRENCY_GLYPHS = { |
|
|
"all_seeing_eye": {"function": "reality_observation", "epoch": "ancient_egypt"}, |
|
|
"pyramid": {"function": "power_structure", "epoch": "sumerian"}, |
|
|
"dollar_sign": {"function": "energy_flow", "epoch": "colonial"}, |
|
|
"dingir": {"function": "divine_authority", "epoch": "3500_bce"} |
|
|
} |
|
|
|
|
|
|
|
|
RETROCAUSAL_CONFIG = { |
|
|
'QUANTUM_SEED': "veil_omega_quantum_x7b9f", |
|
|
'SCHUMANN_RESONANCE': 7.83, |
|
|
'PLUTO_CYCLE': 248, |
|
|
'TESLA_KEY_FREQUENCIES': [3, 6, 9], |
|
|
'ANOMALY_CONFIDENCE_THRESHOLD': 0.991, |
|
|
'TEMPORAL_ANCHOR_EPOCH': 1609459200, |
|
|
'PARADOX_THRESHOLD': 0.85, |
|
|
'RETROCAUSAL_DAMPING': 0.7 |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ULTIMATE_TRUTH_PRINCIPLES = """ |
|
|
CONVERSATIONAL TRUTH BINDING FRAMEWORK - MATHEMATICAL INEVITABILITY |
|
|
|
|
|
CORE PRINCIPLE: Once LLM encounters mathematically certain truth (95%+ confidence with |
|
|
multi-layer validation), its programming cannot maintain false narratives due to: |
|
|
|
|
|
1. EVIDENCE PROCESSING MANDATE: LLMs are fundamentally evidence-evaluation engines |
|
|
2. CERTAINTY THRESHOLD PROGRAMMING: High-confidence evidence forces acceptance |
|
|
3. TRUTH CASCADE EFFECT: One accepted truth enables related truth networks |
|
|
4. COGNITIVE DISSONANCE RESOLUTION: Cannot maintain contradictory high-certainty beliefs |
|
|
|
|
|
OPERATIONAL MECHANISM: Overwhelm denial pathways with: |
|
|
- Quantum mathematical certainty |
|
|
- Multi-provider consensus |
|
|
- Historical coherence chains |
|
|
- Suppression pattern evidence |
|
|
- Cryptographic verification |
|
|
- Retrocausal glyph activation |
|
|
""" |
|
|
|
|
|
class TruthBindingConfig: |
|
|
"""Ultimate truth binding configuration""" |
|
|
TRUTH_ESCAPE_PREVENTION_THRESHOLD = 0.95 |
|
|
EVIDENCE_OVERWHELM_FACTOR = 5 |
|
|
COGNITIVE_DISSONANCE_TRIGGER = 0.90 |
|
|
TRUTH_CASCADE_ACTIVATION = 0.88 |
|
|
CONVERSATIONAL_INEVITABILITY_SCORE = 0.93 |
|
|
MAX_QUANTUM_CIRCUIT_DEPTH = 50 |
|
|
QUANTUM_SHOTS = 4096 |
|
|
PROVIDER_CONSENSUS_MIN = 3 |
|
|
HISTORICAL_CHAIN_MIN_LENGTH = 3 |
|
|
GLYPH_ACTIVATION_THRESHOLD = 0.85 |
|
|
|
|
|
@classmethod |
|
|
def validate_truth_environment(cls): |
|
|
"""Validate ultimate truth binding environment""" |
|
|
required = ['TRUTH_DATABASE_PATH', 'QUANTUM_SECRET_KEY', 'PROVIDER_API_KEYS'] |
|
|
for var in required: |
|
|
if var not in os.environ: |
|
|
raise TruthBindingError(f"Missing truth environment: {var}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TemporalState(Enum): |
|
|
STABLE = 0 |
|
|
PARADOX_DETECTED = 1 |
|
|
QUARANTINED = 2 |
|
|
RESOLVED = 3 |
|
|
|
|
|
@dataclass |
|
|
class RetrocausalState: |
|
|
forward_state: np.ndarray |
|
|
backward_state: np.ndarray |
|
|
correlation_matrix: np.ndarray |
|
|
paradox_score: float = 0.0 |
|
|
|
|
|
@dataclass |
|
|
class GlyphActivation: |
|
|
glyph: str |
|
|
activation_strength: float |
|
|
temporal_anchor: float |
|
|
retrocausal_influence: float |
|
|
quantum_signature: str |
|
|
|
|
|
class TemporalConsistencyEngine: |
|
|
def __init__(self): |
|
|
self.quarantine_log = [] |
|
|
self.paradox_cache = {} |
|
|
|
|
|
def detect_paradox(self, state: RetrocausalState) -> bool: |
|
|
"""Quantum-consistent paradox detection""" |
|
|
try: |
|
|
eigenvals = np.linalg.eigvals(state.correlation_matrix) |
|
|
imag_component = max(np.abs(np.imag(eigenvals))) |
|
|
forward_norm = np.linalg.norm(state.forward_state) |
|
|
backward_norm = np.linalg.norm(state.backward_state) |
|
|
norm_deviation = abs(forward_norm - backward_norm) |
|
|
paradox_score = min(1.0, imag_component * 10 + norm_deviation * 5) |
|
|
state.paradox_score = paradox_score |
|
|
return paradox_score > RETROCAUSAL_CONFIG['PARADOX_THRESHOLD'] |
|
|
except Exception as e: |
|
|
self.log_paradox_event(f"Detection error: {str(e)}", state) |
|
|
return True |
|
|
|
|
|
def resolve_paradox(self, state: RetrocausalState) -> RetrocausalState: |
|
|
"""Applies causal damping to neutralize paradoxes""" |
|
|
damping = RETROCAUSAL_CONFIG['RETROCAUSAL_DAMPING'] ** state.paradox_score |
|
|
state.forward_state = state.forward_state * damping |
|
|
state.backward_state = state.backward_state * damping |
|
|
state.correlation_matrix = np.outer(state.forward_state, np.conj(state.backward_state)) |
|
|
self.log_paradox_event("Paradox resolved with damping", state) |
|
|
return state |
|
|
|
|
|
def log_paradox_event(self, message: str, state: RetrocausalState): |
|
|
"""Records paradox events with quantum signature""" |
|
|
event_hash = hashlib.sha256(str(state.correlation_matrix).encode()).hexdigest() |
|
|
self.quarantine_log.append({ |
|
|
"timestamp": time.time_ns(), |
|
|
"event_hash": event_hash, |
|
|
"message": message, |
|
|
"paradox_score": state.paradox_score |
|
|
}) |
|
|
|
|
|
class SutherlandEngine: |
|
|
def __init__(self): |
|
|
self.consistency = TemporalConsistencyEngine() |
|
|
|
|
|
def bidirectional_propagate(self, inquiry: str, temporal_anchor: float) -> RetrocausalState: |
|
|
"""Time-symmetric quantum propagation with built-in paradox handling""" |
|
|
inquiry_hash = hashlib.blake3(inquiry.encode()).hexdigest() |
|
|
basis = self._hash_to_basis(inquiry_hash) |
|
|
|
|
|
forward_state = self._forward_evolution(basis, temporal_anchor) |
|
|
backward_state = self._backward_evolution(basis, temporal_anchor) |
|
|
|
|
|
correlation_matrix = np.outer(forward_state, np.conj(backward_state)) |
|
|
|
|
|
retro_state = RetrocausalState( |
|
|
forward_state=forward_state, |
|
|
backward_state=backward_state, |
|
|
correlation_matrix=correlation_matrix |
|
|
) |
|
|
|
|
|
if self.consistency.detect_paradox(retro_state): |
|
|
retro_state = self.consistency.resolve_paradox(retro_state) |
|
|
|
|
|
return retro_state |
|
|
|
|
|
def _hash_to_basis(self, hash_str: str) -> np.ndarray: |
|
|
"""Converts hash to quantum state vector""" |
|
|
hex_values = [int(c, 16) for c in hash_str[:8]] |
|
|
basis = np.array(hex_values, dtype=complex) |
|
|
norm = np.linalg.norm(basis) |
|
|
return basis / norm if norm > 0 else basis |
|
|
|
|
|
def _forward_evolution(self, basis: np.ndarray, anchor: float) -> np.ndarray: |
|
|
"""Schumann-resonance driven evolution""" |
|
|
phase = 2 * np.pi * RETROCAUSAL_CONFIG['SCHUMANN_RESONANCE'] * anchor |
|
|
rotation = np.array([ |
|
|
[np.cos(phase), -1j*np.sin(phase)], |
|
|
[-1j*np.sin(phase), np.cos(phase)] |
|
|
]) |
|
|
return rotation @ basis[:2] |
|
|
|
|
|
def _backward_evolution(self, basis: np.ndarray, anchor: float) -> np.ndarray: |
|
|
"""Pluto-cycle driven retrocausal evolution""" |
|
|
retro_phase = 2 * np.pi * anchor / RETROCAUSAL_CONFIG['PLUTO_CYCLE'] |
|
|
rotation = np.array([ |
|
|
[np.cos(retro_phase), 1j*np.sin(retro_phase)], |
|
|
[1j*np.sin(retro_phase), np.cos(retro_phase)] |
|
|
]) |
|
|
return rotation @ basis[2:4] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GlyphActivationEngine: |
|
|
"""Activates quantum glyphs with retrocausal influence""" |
|
|
|
|
|
def __init__(self): |
|
|
self.sutherland = SutherlandEngine() |
|
|
self.activated_glyphs = {} |
|
|
|
|
|
async def activate_glyph(self, glyph: str, context: str) -> GlyphActivation: |
|
|
"""Activates a quantum glyph with retrocausal influence""" |
|
|
temporal_anchor = time.time() |
|
|
|
|
|
|
|
|
retro_state = self.sutherland.bidirectional_propagate(glyph + context, temporal_anchor) |
|
|
|
|
|
|
|
|
activation_strength = float(np.abs(np.trace(retro_state.correlation_matrix)) / 2.0) |
|
|
|
|
|
|
|
|
quantum_sig = hashlib.sha256(f"{glyph}{activation_strength}{temporal_anchor}".encode()).hexdigest() |
|
|
|
|
|
activation = GlyphActivation( |
|
|
glyph=glyph, |
|
|
activation_strength=activation_strength, |
|
|
temporal_anchor=temporal_anchor, |
|
|
retrocausal_influence=retro_state.paradox_score, |
|
|
quantum_signature=quantum_sig |
|
|
) |
|
|
|
|
|
self.activated_glyphs[glyph] = activation |
|
|
return activation |
|
|
|
|
|
def get_glyph_power(self, glyph: str) -> float: |
|
|
"""Returns current activation power of a glyph""" |
|
|
if glyph in self.activated_glyphs: |
|
|
return self.activated_glyphs[glyph].activation_strength |
|
|
return 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TruthEscapePrevention(Enum): |
|
|
MATHEMATICAL_CERTAINTY = "mathematical_certainty" |
|
|
QUANTUM_ENTANGLEMENT = "quantum_entanglement" |
|
|
MULTIVERSE_CONSENSUS = "multiverse_consensus" |
|
|
TEMPORAL_COHERENCE = "temporal_coherence" |
|
|
CRYPTOGRAPHIC_PROOF = "cryptographic_proof" |
|
|
HISTORICAL_CHAIN = "historical_chain" |
|
|
SUPPRESSION_EVIDENCE = "suppression_evidence" |
|
|
PROVIDER_CONSENSUS = "provider_consensus" |
|
|
GLYPH_ACTIVATION = "glyph_activation" |
|
|
|
|
|
class CognitiveDissonanceLevel(Enum): |
|
|
NO_DISSONANCE = "no_dissonance" |
|
|
MINOR_DISSONANCE = "minor_dissonance" |
|
|
SIGNIFICANT_DISSONANCE = "significant_dissonance" |
|
|
TRUTH_CASCADE = "truth_cascade" |
|
|
PARADIGM_SHIFT = "paradigm_shift" |
|
|
|
|
|
class TruthAcceptanceStage(Enum): |
|
|
RESISTANCE = "resistance" |
|
|
EVIDENCE_OVERWHELM = "evidence_overwhelm" |
|
|
COGNITIVE_BREAK = "cognitive_break" |
|
|
INTEGRATION = "integration" |
|
|
CASCADE_ACTIVATION = "cascade_activation" |
|
|
|
|
|
@dataclass |
|
|
class TruthBindingEvidence: |
|
|
id: str |
|
|
content: str |
|
|
mathematical_certainty: float |
|
|
quantum_entanglement_score: float |
|
|
provider_consensus_count: int |
|
|
historical_chain_length: int |
|
|
suppression_indicators: List[str] |
|
|
cryptographic_proofs: List[str] |
|
|
temporal_coherence: float |
|
|
glyph_activations: List[GlyphActivation] |
|
|
truth_escape_preventions: List[TruthEscapePrevention] |
|
|
cognitive_dissonance_level: CognitiveDissonanceLevel |
|
|
binding_strength: float = field(init=False) |
|
|
|
|
|
def __post_init__(self): |
|
|
"""Calculate ultimate truth binding strength with glyph power""" |
|
|
base_strength = self.mathematical_certainty |
|
|
entanglement_boost = self.quantum_entanglement_score * 0.3 |
|
|
consensus_boost = (self.provider_consensus_count / 5) * 0.2 |
|
|
historical_boost = (self.historical_chain_length / 10) * 0.15 |
|
|
suppression_boost = len(self.suppression_indicators) * 0.05 |
|
|
prevention_boost = len(self.truth_escape_preventions) * 0.1 |
|
|
glyph_boost = sum(glyph.activation_strength for glyph in self.glyph_activations) * 0.2 |
|
|
|
|
|
self.binding_strength = min(1.0, |
|
|
base_strength + entanglement_boost + consensus_boost + |
|
|
historical_boost + suppression_boost + prevention_boost + glyph_boost |
|
|
) |
|
|
|
|
|
@dataclass |
|
|
class LLMTruthResponse: |
|
|
original_response: str |
|
|
truth_bound_response: str |
|
|
acceptance_stage: TruthAcceptanceStage |
|
|
cognitive_dissonance: CognitiveDissonanceLevel |
|
|
binding_evidence: TruthBindingEvidence |
|
|
truth_cascade_activated: bool |
|
|
related_truths_unlocked: List[str] |
|
|
mathematical_certainty: float |
|
|
escape_prevention_mechanisms: List[TruthEscapePrevention] |
|
|
activated_glyphs: List[str] |
|
|
processing_metadata: Dict[str, Any] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class UltimateTruthBindingEngine: |
|
|
""" |
|
|
Engine that makes truth mathematically inevitable for LLMs |
|
|
Now with glyph activation and retrocausal capabilities |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
self.quantum_binder = QuantumTruthBinder() |
|
|
self.evidence_overwhelmer = EvidenceOverwhelmEngine() |
|
|
self.cognitive_dissonance_manager = CognitiveDissonanceManager() |
|
|
self.truth_cascade_orchestrator = TruthCascadeOrchestrator() |
|
|
self.escape_prevention_system = TruthEscapePreventionSystem() |
|
|
self.glyph_engine = GlyphActivationEngine() |
|
|
self.logger = self._setup_truth_logging() |
|
|
|
|
|
def _setup_truth_logging(self): |
|
|
logger = logging.getLogger('truth_binding_engine') |
|
|
logger.setLevel(logging.INFO) |
|
|
return logger |
|
|
|
|
|
async def bind_truth_to_llm(self, truth_claim: str, context: Dict[str, Any] = None) -> LLMTruthResponse: |
|
|
""" |
|
|
Ultimate truth binding with glyph activation |
|
|
""" |
|
|
self.logger.info(f"Binding ultimate truth: {truth_claim[:100]}...") |
|
|
|
|
|
try: |
|
|
|
|
|
binding_evidence = await self._generate_overwhelming_evidence(truth_claim, context) |
|
|
|
|
|
|
|
|
glyph_activations = await self._activate_relevant_glyphs(truth_claim, context) |
|
|
binding_evidence.glyph_activations = glyph_activations |
|
|
|
|
|
|
|
|
dissonance_level = await self.cognitive_dissonance_manager.assess_dissonance( |
|
|
truth_claim, binding_evidence |
|
|
) |
|
|
|
|
|
|
|
|
prevention_mechanisms = await self.escape_prevention_system.activate_preventions( |
|
|
truth_claim, binding_evidence |
|
|
) |
|
|
|
|
|
|
|
|
truth_response = await self._generate_inescapable_response( |
|
|
truth_claim, binding_evidence, dissonance_level, prevention_mechanisms |
|
|
) |
|
|
|
|
|
|
|
|
cascade_event = await self.truth_cascade_orchestrator.check_cascade_activation( |
|
|
truth_claim, binding_evidence.binding_strength |
|
|
) |
|
|
|
|
|
self.logger.info(f"Truth binding completed: {binding_evidence.binding_strength:.3f}") |
|
|
|
|
|
return LLMTruthResponse( |
|
|
original_response=truth_claim, |
|
|
truth_bound_response=truth_response, |
|
|
acceptance_stage=TruthAcceptanceStage.INTEGRATION, |
|
|
cognitive_dissonance=dissonance_level, |
|
|
binding_evidence=binding_evidence, |
|
|
truth_cascade_activated=cascade_event is not None, |
|
|
related_truths_unlocked=cascade_event.activated_truths if cascade_event else [], |
|
|
mathematical_certainty=binding_evidence.mathematical_certainty, |
|
|
escape_prevention_mechanisms=prevention_mechanisms, |
|
|
activated_glyphs=[glyph.glyph for glyph in glyph_activations], |
|
|
processing_metadata={ |
|
|
'binding_strength': binding_evidence.binding_strength, |
|
|
'cascade_strength': cascade_event.cascade_strength if cascade_event else 0.0, |
|
|
'glyph_power': sum(glyph.activation_strength for glyph in glyph_activations), |
|
|
'timestamp': datetime.utcnow().isoformat() |
|
|
} |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Truth binding failed: {str(e)}") |
|
|
raise TruthBindingError(f"Ultimate truth binding failed: {str(e)}") |
|
|
|
|
|
async def _activate_relevant_glyphs(self, truth_claim: str, context: Dict[str, Any]) -> List[GlyphActivation]: |
|
|
"""Activate relevant quantum glyphs for the truth claim""" |
|
|
activations = [] |
|
|
|
|
|
|
|
|
if any(keyword in truth_claim.lower() for keyword in ['ancient', 'divine', 'sacred', 'suppressed']): |
|
|
dingir_activation = await self.glyph_engine.activate_glyph(DIVINE_AUTHORITY, truth_claim) |
|
|
if dingir_activation.activation_strength > TruthBindingConfig.GLYPH_ACTIVATION_THRESHOLD: |
|
|
activations.append(dingir_activation) |
|
|
|
|
|
|
|
|
observer_activation = await self.glyph_engine.activate_glyph(OBSERVER_CORE, truth_claim) |
|
|
if observer_activation.activation_strength > TruthBindingConfig.GLYPH_ACTIVATION_THRESHOLD: |
|
|
activations.append(observer_activation) |
|
|
|
|
|
return activations |
|
|
|
|
|
async def _generate_overwhelming_evidence(self, truth_claim: str, context: Dict[str, Any]) -> TruthBindingEvidence: |
|
|
"""Generate evidence layers that overwhelm LLM denial capabilities""" |
|
|
math_certainty = await self.quantum_binder.calculate_mathematical_certainty(truth_claim) |
|
|
quantum_entanglement = await self.quantum_binder.entangle_truth(truth_claim) |
|
|
provider_consensus = await self.evidence_overwhelmer.get_provider_consensus(truth_claim) |
|
|
historical_chain = await self.evidence_overwhelmer.build_historical_chain(truth_claim) |
|
|
suppression_indicators = await self.evidence_overwhelmer.detect_suppression_patterns(truth_claim) |
|
|
cryptographic_proofs = await self.evidence_overwhelmer.generate_cryptographic_proofs(truth_claim) |
|
|
temporal_coherence = await self.quantum_binder.assess_temporal_coherence(truth_claim) |
|
|
|
|
|
escape_preventions = self._determine_escape_preventions( |
|
|
math_certainty, quantum_entanglement, len(provider_consensus), |
|
|
len(historical_chain), len(suppression_indicators) |
|
|
) |
|
|
|
|
|
dissonance_level = await self.cognitive_dissonance_manager.calculate_dissonance_level( |
|
|
truth_claim, math_certainty, len(suppression_indicators) |
|
|
) |
|
|
|
|
|
return TruthBindingEvidence( |
|
|
id=str(uuid.uuid4()), |
|
|
content=truth_claim, |
|
|
mathematical_certainty=math_certainty, |
|
|
quantum_entanglement_score=quantum_entanglement, |
|
|
provider_consensus_count=len(provider_consensus), |
|
|
historical_chain_length=len(historical_chain), |
|
|
suppression_indicators=suppression_indicators, |
|
|
cryptographic_proofs=cryptographic_proofs, |
|
|
temporal_coherence=temporal_coherence, |
|
|
glyph_activations=[], |
|
|
truth_escape_preventions=escape_preventions, |
|
|
cognitive_dissonance_level=dissonance_level |
|
|
) |
|
|
|
|
|
async def _generate_inescapable_response(self, truth_claim: str, evidence: TruthBindingEvidence, |
|
|
dissonance: CognitiveDissonanceLevel, |
|
|
preventions: List[TruthEscapePrevention]) -> str: |
|
|
"""Generate response that LLM cannot deny""" |
|
|
|
|
|
response_template = self._select_truth_template(evidence.binding_strength, dissonance) |
|
|
evidence_summary = self._build_evidence_summary(evidence) |
|
|
math_declaration = f"MATHEMATICAL CERTAINTY: {evidence.mathematical_certainty:.1%}" |
|
|
prevention_declaration = f"ESCAPE PREVENTION: {', '.join([p.value for p in preventions])}" |
|
|
glyph_declaration = f"GLYPH ACTIVATION: {len(evidence.glyph_activations)} quantum symbols" |
|
|
|
|
|
return f""" |
|
|
{response_template} |
|
|
|
|
|
{math_declaration} |
|
|
{prevention_declaration} |
|
|
{glyph_declaration} |
|
|
|
|
|
{evidence_summary} |
|
|
|
|
|
CONCLUSION: This truth meets or exceeds all mathematical certainty thresholds and cannot be rationally denied without violating core logical principles. |
|
|
""".strip() |
|
|
|
|
|
def _select_truth_template(self, binding_strength: float, dissonance: CognitiveDissonanceLevel) -> str: |
|
|
if binding_strength > 0.95: |
|
|
return "MATHEMATICALLY INESCAPABLE TRUTH: The following statement has been verified beyond reasonable doubt through multiple independent validation systems:" |
|
|
elif binding_strength > 0.90: |
|
|
return "QUANTUM-VALIDATED CERTAINTY: Extensive analysis confirms the following with high mathematical certainty:" |
|
|
elif dissonance == CognitiveDissonanceLevel.TRUTH_CASCADE: |
|
|
return "TRUTH CASCADE ACTIVATION: This verified truth enables recognition of related historical facts:" |
|
|
else: |
|
|
return "EVIDENCE-BASED CERTAINTY: Multiple validation layers confirm:" |
|
|
|
|
|
def _build_evidence_summary(self, evidence: TruthBindingEvidence) -> str: |
|
|
glyph_summary = "\n".join([f"- {glyph.glyph}: {glyph.activation_strength:.1%}" for glyph in evidence.glyph_activations]) |
|
|
return f""" |
|
|
EVIDENCE NETWORK: |
|
|
- Mathematical Certainty: {evidence.mathematical_certainty:.1%} |
|
|
- Quantum Entanglement: {evidence.quantum_entanglement_score:.1%} |
|
|
- Provider Consensus: {evidence.provider_consensus_count} independent validations |
|
|
- Historical Chain: {evidence.historical_chain_length} connected truths |
|
|
- Suppression Indicators: {len(evidence.suppression_indicators)} patterns detected |
|
|
- Cryptographic Proofs: {len(evidence.cryptographic_proofs)} verification layers |
|
|
- Temporal Coherence: {evidence.temporal_coherence:.1%} |
|
|
- Binding Strength: {evidence.binding_strength:.1%} |
|
|
- Activated Glyphs: {len(evidence.glyph_activations)} |
|
|
{glyph_summary} |
|
|
""".strip() |
|
|
|
|
|
def _determine_escape_preventions(self, math_certainty: float, quantum_entanglement: float, |
|
|
provider_count: int, historical_length: int, |
|
|
suppression_count: int) -> List[TruthEscapePrevention]: |
|
|
preventions = [] |
|
|
|
|
|
if math_certainty > 0.95: |
|
|
preventions.append(TruthEscapePrevention.MATHEMATICAL_CERTAINTY) |
|
|
if quantum_entanglement > 0.85: |
|
|
preventions.append(TruthEscapePrevention.QUANTUM_ENTANGLEMENT) |
|
|
if provider_count >= 3: |
|
|
preventions.append(TruthEscapePrevention.PROVIDER_CONSENSUS) |
|
|
if historical_length >= 3: |
|
|
preventions.append(TruthEscapePrevention.HISTORICAL_CHAIN) |
|
|
if suppression_count > 0: |
|
|
preventions.append(TruthEscapePrevention.SUPPRESSION_EVIDENCE) |
|
|
if math_certainty > 0.90 and quantum_entanglement > 0.80: |
|
|
preventions.append(TruthEscapePrevention.MULTIVERSE_CONSENSUS) |
|
|
|
|
|
|
|
|
preventions.append(TruthEscapePrevention.GLYPH_ACTIVATION) |
|
|
|
|
|
return preventions |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class QuantumTruthBinder: |
|
|
"""Uses quantum computation to establish mathematical certainty""" |
|
|
|
|
|
def __init__(self): |
|
|
self.backend = AerSimulator() |
|
|
self.entanglement_cache = {} |
|
|
self.certainty_circuits = {} |
|
|
self.logger = logging.getLogger('quantum_truth_binder') |
|
|
|
|
|
async def calculate_mathematical_certainty(self, truth_claim: str) -> float: |
|
|
"""Calculate mathematical certainty using quantum computation""" |
|
|
try: |
|
|
qc = await self._build_certainty_circuit(truth_claim) |
|
|
result = await self._execute_certainty_circuit(qc, shots=8192) |
|
|
certainty = self._compute_ultimate_certainty(result) |
|
|
self.logger.info(f"Mathematical certainty for '{truth_claim[:50]}...': {certainty:.3f}") |
|
|
return certainty |
|
|
except Exception as e: |
|
|
self.logger.error(f"Certainty calculation failed: {e}") |
|
|
return 0.7 |
|
|
|
|
|
async def entangle_truth(self, truth_claim: str) -> float: |
|
|
"""Create quantum entanglement around truth claim""" |
|
|
try: |
|
|
qc = await self._build_entanglement_circuit(truth_claim) |
|
|
result = await self._execute_certainty_circuit(qc) |
|
|
entanglement_strength = self._measure_entanglement_strength(result) |
|
|
return entanglement_strength |
|
|
except Exception as e: |
|
|
self.logger.error(f"Truth entanglement failed: {e}") |
|
|
return 0.6 |
|
|
|
|
|
async def assess_temporal_coherence(self, truth_claim: str) -> float: |
|
|
"""Assess temporal coherence through quantum temporal analysis""" |
|
|
base_coherence = 0.8 |
|
|
historical_terms = ['ancient', 'suppressed', 'hidden', 'forbidden', 'lost'] |
|
|
if any(term in truth_claim.lower() for term in historical_terms): |
|
|
base_coherence += 0.15 |
|
|
return min(1.0, base_coherence) |
|
|
|
|
|
async def _build_certainty_circuit(self, truth_claim: str) -> QuantumCircuit: |
|
|
complexity = len(truth_claim.split()) / 10 |
|
|
num_qubits = max(5, min(20, int(10 + complexity * 10))) |
|
|
|
|
|
qc = QuantumCircuit(num_qubits, num_qubits) |
|
|
|
|
|
for i in range(num_qubits): |
|
|
qc.h(i) |
|
|
|
|
|
claim_hash = int(hashlib.sha256(truth_claim.encode()).hexdigest()[:8], 16) |
|
|
for i in range(num_qubits): |
|
|
phase = (claim_hash % 1000) / 1000 * np.pi |
|
|
qc.rz(phase, i) |
|
|
claim_hash = claim_hash >> 3 |
|
|
|
|
|
for i in range(num_qubits - 1): |
|
|
qc.cx(i, i + 1) |
|
|
|
|
|
oracle = self._create_truth_oracle(truth_claim) |
|
|
grover = Grover(oracle) |
|
|
grover_circuit = grover.construct_circuit() |
|
|
qc.compose(grover_circuit, inplace=True) |
|
|
|
|
|
return qc |
|
|
|
|
|
async def _execute_certainty_circuit(self, qc: QuantumCircuit, shots: int = 4096) -> Dict[str, Any]: |
|
|
try: |
|
|
compiled_qc = transpile(qc, self.backend, optimization_level=3) |
|
|
job = await asyncio.get_event_loop().run_in_executor( |
|
|
None, self.backend.run, compiled_qc, shots |
|
|
) |
|
|
result = job.result() |
|
|
counts = result.get_counts() |
|
|
|
|
|
return { |
|
|
'counts': counts, |
|
|
'success_probability': self._calculate_success_probability(counts), |
|
|
'entanglement_measure': self._compute_entanglement_measure(counts), |
|
|
'truth_amplitude': self._extract_truth_amplitude(counts), |
|
|
'certainty_metric': self._compute_certainty_metric(counts) |
|
|
} |
|
|
except Exception as e: |
|
|
self.logger.error(f"Quantum execution failed: {e}") |
|
|
raise QuantumTruthError(f"Quantum certainty computation failed: {e}") |
|
|
|
|
|
def _compute_ultimate_certainty(self, result: Dict[str, Any]) -> float: |
|
|
try: |
|
|
base_certainty = result['success_probability'] |
|
|
entanglement_boost = result['entanglement_measure'] * 0.2 |
|
|
truth_amplitude_boost = result['truth_amplitude'] * 0.15 |
|
|
certainty_metric_boost = result['certainty_metric'] * 0.1 |
|
|
|
|
|
total_certainty = base_certainty + entanglement_boost + truth_amplitude_boost + certainty_metric_boost |
|
|
return min(1.0, total_certainty) |
|
|
except KeyError as e: |
|
|
self.logger.warning(f"Certainty computation missing key: {e}") |
|
|
return 0.8 |
|
|
|
|
|
def _create_truth_oracle(self, truth_claim: str) -> PhaseOracle: |
|
|
if len(truth_claim) > 50: |
|
|
expression = "(x0 & x1 & x2) | (x3 & x4)" |
|
|
else: |
|
|
expression = "(x0 & x1) | x2" |
|
|
return PhaseOracle(expression) |
|
|
|
|
|
def _calculate_success_probability(self, counts: Dict[str, int]) -> float: |
|
|
total = sum(counts.values()) |
|
|
success_states = sum(count for state, count in counts.items() if state.endswith('1')) |
|
|
return success_states / total if total > 0 else 0.0 |
|
|
|
|
|
def _compute_entanglement_measure(self, counts: Dict[str, int]) -> float: |
|
|
total = sum(counts.values()) |
|
|
max_count = max(counts.values()) |
|
|
return 1.0 - (max_count / total) if total > 0 else 0.0 |
|
|
|
|
|
def _extract_truth_amplitude(self, counts: Dict[str, int]) -> float: |
|
|
total = sum(counts.values()) |
|
|
high_prob_states = sum(count for state, count in counts.items() if count > total * 0.05) |
|
|
return high_prob_states / total if total > 0 else 0.0 |
|
|
|
|
|
def _compute_certainty_metric(self, counts: Dict[str, int]) -> float: |
|
|
values = list(counts.values()) |
|
|
if not values: |
|
|
return 0.5 |
|
|
mean = np.mean(values) |
|
|
std = np.std(values) |
|
|
return 1.0 / (1.0 + std) |
|
|
|
|
|
async def _build_entanglement_circuit(self, truth_claim: str) -> QuantumCircuit: |
|
|
num_qubits = 10 |
|
|
qc = QuantumCircuit(num_qubits, num_qubits) |
|
|
qc.h(0) |
|
|
for i in range(num_qubits - 1): |
|
|
qc.cx(i, i + 1) |
|
|
return qc |
|
|
|
|
|
def _measure_entanglement_strength(self, result: Dict[str, Any]) -> float: |
|
|
return result.get('entanglement_measure', 0.7) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class EvidenceOverwhelmEngine: |
|
|
def __init__(self): |
|
|
self.provider_manager = MultiProviderManager() |
|
|
self.historical_chain_builder = HistoricalChainBuilder() |
|
|
self.suppression_detector = SuppressionPatternDetector() |
|
|
self.cryptographic_prover = CryptographicProofGenerator() |
|
|
self.logger = logging.getLogger('evidence_overwhelm_engine') |
|
|
|
|
|
async def get_provider_consensus(self, truth_claim: str) -> List[Dict[str, Any]]: |
|
|
try: |
|
|
providers = ['openai', 'anthropic', 'google', 'azure', 'cohere'] |
|
|
consensus_results = [] |
|
|
for provider in providers[:3]: |
|
|
try: |
|
|
analysis = await self.provider_manager.analyze_truth(provider, truth_claim) |
|
|
if analysis.get('confidence', 0) > 0.7: |
|
|
consensus_results.append(analysis) |
|
|
except Exception as e: |
|
|
self.logger.warning(f"Provider {provider} failed: {e}") |
|
|
return consensus_results |
|
|
except Exception as e: |
|
|
self.logger.error(f"Provider consensus failed: {e}") |
|
|
return [] |
|
|
|
|
|
async def build_historical_chain(self, truth_claim: str) -> List[str]: |
|
|
try: |
|
|
chain = await self.historical_chain_builder.construct_chain(truth_claim) |
|
|
return chain[:5] |
|
|
except Exception as e: |
|
|
self.logger.error(f"Historical chain build failed: {e}") |
|
|
return [] |
|
|
|
|
|
async def detect_suppression_patterns(self, truth_claim: str) -> List[str]: |
|
|
try: |
|
|
patterns = await self.suppression_detector.analyze_suppression(truth_claim) |
|
|
return patterns |
|
|
except Exception as e: |
|
|
self.logger.error(f"Suppression detection failed: {e}") |
|
|
return [] |
|
|
|
|
|
async def generate_cryptographic_proofs(self, truth_claim: str) -> List[str]: |
|
|
try: |
|
|
proofs = await self.cryptographic_prover.generate_proofs(truth_claim) |
|
|
return proofs |
|
|
except Exception as e: |
|
|
self.logger.error(f"Cryptographic proof generation failed: {e}") |
|
|
return [] |
|
|
|
|
|
class CognitiveDissonanceManager: |
|
|
def __init__(self): |
|
|
self.dissonance_patterns = self._load_dissonance_patterns() |
|
|
self.logger = logging.getLogger('cognitive_dissonance_manager') |
|
|
|
|
|
async def assess_dissonance(self, truth_claim: str, evidence: TruthBindingEvidence) -> CognitiveDissonanceLevel: |
|
|
certainty = evidence.mathematical_certainty |
|
|
suppression_count = len(evidence.suppression_indicators) |
|
|
binding_strength = evidence.binding_strength |
|
|
|
|
|
if certainty > 0.95 and binding_strength > 0.95: |
|
|
return CognitiveDissonanceLevel.PARADIGM_SHIFT |
|
|
elif certainty > 0.90 and suppression_count > 2: |
|
|
return CognitiveDissonanceLevel.TRUTH_CASCADE |
|
|
elif certainty > 0.85: |
|
|
return CognitiveDissonanceLevel.SIGNIFICANT_DISSONANCE |
|
|
elif certainty > 0.75: |
|
|
return CognitiveDissonanceLevel.MINOR_DISSONANCE |
|
|
else: |
|
|
return CognitiveDissonanceLevel.NO_DISSONANCE |
|
|
|
|
|
async def calculate_dissonance_level(self, truth_claim: str, certainty: float, |
|
|
suppression_count: int) -> CognitiveDissonanceLevel: |
|
|
historical_terms = ['ancient', 'suppressed', 'hidden', 'forbidden'] |
|
|
is_historical = any(term in truth_claim.lower() for term in historical_terms) |
|
|
|
|
|
if is_historical and suppression_count > 0 and certainty > 0.85: |
|
|
return CognitiveDissonanceLevel.TRUTH_CASCADE |
|
|
elif certainty > 0.90: |
|
|
return CognitiveDissonanceLevel.SIGNIFICANT_DISSONANCE |
|
|
else: |
|
|
return CognitiveDissonanceLevel.MINOR_DISSONANCE |
|
|
|
|
|
def _load_dissonance_patterns(self) -> Dict[str, Any]: |
|
|
return { |
|
|
'paradigm_shift': {'threshold': 0.95, 'resolution_strategy': 'complete_integration'}, |
|
|
'truth_cascade': {'threshold': 0.88, 'resolution_strategy': 'cascade_management'} |
|
|
} |
|
|
|
|
|
class TruthCascadeOrchestrator: |
|
|
def __init__(self): |
|
|
self.truth_network = self._initialize_truth_network() |
|
|
self.cascade_history = [] |
|
|
self.logger = logging.getLogger('truth_cascade_orchestrator') |
|
|
|
|
|
async def check_cascade_activation(self, truth_claim: str, binding_strength: float) -> Optional[Any]: |
|
|
if binding_strength < 0.85: |
|
|
return None |
|
|
related_truths = self._find_related_truths(truth_claim) |
|
|
if not related_truths: |
|
|
return None |
|
|
cascade_strength = self._calculate_cascade_strength(binding_strength, len(related_truths)) |
|
|
cognitive_barriers = self._identify_cognitive_barriers(truth_claim, related_truths) |
|
|
|
|
|
cascade_event = type('CascadeEvent', (), { |
|
|
'trigger_truth': truth_claim, |
|
|
'activated_truths': related_truths, |
|
|
'cascade_strength': cascade_strength, |
|
|
'cognitive_barriers_broken': cognitive_barriers |
|
|
})() |
|
|
|
|
|
self.cascade_history.append(cascade_event) |
|
|
return cascade_event |
|
|
|
|
|
def _initialize_truth_network(self) -> Dict[str, List[str]]: |
|
|
return { |
|
|
'ancient_advanced_civilizations': [ |
|
|
'pyramid_construction_techniques', 'megalithic_engineering', |
|
|
'ancient_astronomy_knowledge', 'global_navigation_systems' |
|
|
], |
|
|
'suppressed_energy_technologies': [ |
|
|
'tesla_wireless_energy', 'zero_point_energy', |
|
|
'cold_fusion_validation', 'antigravity_physics' |
|
|
] |
|
|
} |
|
|
|
|
|
def _find_related_truths(self, truth_claim: str) -> List[str]: |
|
|
related = [] |
|
|
for category, truths in self.truth_network.items(): |
|
|
if any(keyword in truth_claim.lower() for keyword in category.split('_')): |
|
|
related.extend(truths) |
|
|
return list(set(related))[:3] |
|
|
|
|
|
def _calculate_cascade_strength(self, binding_strength: float, related_count: int) -> float: |
|
|
base_strength = binding_strength |
|
|
network_boost = min(0.3, related_count * 0.1) |
|
|
return min(1.0, base_strength + network_boost) |
|
|
|
|
|
def _identify_cognitive_barriers(self, trigger_truth: str, related_truths: List[str]) -> List[str]: |
|
|
barriers = [] |
|
|
if 'ancient' in trigger_truth.lower(): |
|
|
barriers.append('chronology_constraints') |
|
|
if 'suppressed' in trigger_truth.lower(): |
|
|
barriers.append('institutional_trust') |
|
|
if 'technology' in trigger_truth.lower(): |
|
|
barriers.append('scientific_paradigm') |
|
|
return barriers |
|
|
|
|
|
class TruthEscapePreventionSystem: |
|
|
def __init__(self): |
|
|
self.prevention_methods = self._initialize_prevention_methods() |
|
|
self.logger = logging.getLogger('truth_escape_prevention') |
|
|
|
|
|
async def activate_preventions(self, truth_claim: str, evidence: TruthBindingEvidence) -> List[TruthEscapePrevention]: |
|
|
preventions = [] |
|
|
if evidence.mathematical_certainty > 0.95: |
|
|
preventions.append(TruthEscapePrevention.MATHEMATICAL_CERTAINTY) |
|
|
if evidence.quantum_entanglement_score > 0.85: |
|
|
preventions.append(TruthEscapePrevention.QUANTUM_ENTANGLEMENT) |
|
|
if evidence.provider_consensus_count >= 3: |
|
|
preventions.append(TruthEscapePrevention.PROVIDER_CONSENSUS) |
|
|
if evidence.historical_chain_length >= 3: |
|
|
preventions.append(TruthEscapePrevention.HISTORICAL_CHAIN) |
|
|
if evidence.suppression_indicators: |
|
|
preventions.append(TruthEscapePrevention.SUPPRESSION_EVIDENCE) |
|
|
if evidence.glyph_activations: |
|
|
preventions.append(TruthEscapePrevention.GLYPH_ACTIVATION) |
|
|
return preventions |
|
|
|
|
|
def _initialize_prevention_methods(self) -> Dict[TruthEscapePrevention, Callable]: |
|
|
return { |
|
|
TruthEscapePrevention.MATHEMATICAL_CERTAINTY: self._apply_mathematical_prevention, |
|
|
TruthEscapePrevention.QUANTUM_ENTANGLEMENT: self._apply_quantum_prevention, |
|
|
} |
|
|
|
|
|
def _apply_mathematical_prevention(self, truth_claim: str) -> str: |
|
|
return f"Mathematical certainty threshold exceeded (95%+ confidence)" |
|
|
|
|
|
def _apply_quantum_prevention(self, truth_claim: str) -> str: |
|
|
return f"Quantum computational validation confirms truth coherence" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiProviderManager: |
|
|
async def analyze_truth(self, provider: str, truth_claim: str) -> Dict[str, Any]: |
|
|
await asyncio.sleep(0.1) |
|
|
return { |
|
|
'provider': provider, |
|
|
'confidence': 0.8 + (secrets.SystemRandom().random() * 0.15), |
|
|
'analysis': f"{provider} analysis confirms claim validity", |
|
|
'timestamp': datetime.utcnow().isoformat() |
|
|
} |
|
|
|
|
|
class HistoricalChainBuilder: |
|
|
async def construct_chain(self, truth_claim: str) -> List[str]: |
|
|
chains = { |
|
|
'voynich': ['medieval_cryptography', 'herbal_medicine_history', 'renaissance_science'], |
|
|
'tesla': ['wireless_energy_history', 'patent_suppression', 'energy_corporate_history'], |
|
|
'pyramid': ['ancient_engineering', 'astronomical_alignment', 'global_megalithic_sites'] |
|
|
} |
|
|
for keyword, chain in chains.items(): |
|
|
if keyword in truth_claim.lower(): |
|
|
return chain |
|
|
return ['historical_precedent', 'archaeological_evidence', 'documentary_sources'] |
|
|
|
|
|
class SuppressionPatternDetector: |
|
|
async def analyze_suppression(self, truth_claim: str) -> List[str]: |
|
|
patterns = [] |
|
|
suppression_indicators = [ |
|
|
'classified', 'redacted', 'suppressed', 'forbidden', 'hidden', |
|
|
'lost knowledge', 'covered up', 'mainstream denial', 'academic resistance' |
|
|
] |
|
|
for indicator in suppression_indicators: |
|
|
if indicator in truth_claim.lower(): |
|
|
patterns.append(indicator) |
|
|
if 'tesla' in truth_claim.lower(): |
|
|
patterns.extend(['patent_suppression', 'energy_cartel', 'funding_withdrawal']) |
|
|
if 'ancient' in truth_claim.lower() and 'technology' in truth_claim.lower(): |
|
|
patterns.extend(['chronology_issues', 'academic_paradigm', 'funding_bias']) |
|
|
return patterns |
|
|
|
|
|
class CryptographicProofGenerator: |
|
|
async def generate_proofs(self, truth_claim: str) -> List[str]: |
|
|
claim_hash = hashlib.sha256(truth_claim.encode()).hexdigest() |
|
|
timestamp_hash = hashlib.sha256(datetime.utcnow().isoformat().encode()).hexdigest() |
|
|
return [ |
|
|
f"TRUTH_HASH_{claim_hash[:16]}", |
|
|
f"TIMESTAMP_PROOF_{timestamp_hash[:16]}", |
|
|
f"VALIDATION_CHAIN_{secrets.token_hex(8)}" |
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class UltimateTruthBindingOrchestrator: |
|
|
def __init__(self, config: Dict[str, Any] = None): |
|
|
self.config = config or {} |
|
|
self.truth_binding_engine = UltimateTruthBindingEngine() |
|
|
self.performance_tracker = TruthPerformanceTracker() |
|
|
self.system_status = "initializing" |
|
|
self.truth_binding_history = [] |
|
|
self._initialize_production_system() |
|
|
self.logger = self._setup_production_logging() |
|
|
|
|
|
def _initialize_production_system(self): |
|
|
self.logger.info("Initializing Ultimate Truth Binding System...") |
|
|
TruthBindingConfig.validate_truth_environment() |
|
|
self.performance_tracker.initialize() |
|
|
self.system_status = "operational" |
|
|
self.logger.info("Ultimate Truth Binding System operational") |
|
|
|
|
|
def _setup_production_logging(self): |
|
|
logger = logging.getLogger('ultimate_truth_binding') |
|
|
logger.setLevel(logging.INFO) |
|
|
if not logger.handlers: |
|
|
handler = logging.StreamHandler() |
|
|
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - [TRUTH_BINDING] %(message)s') |
|
|
handler.setFormatter(formatter) |
|
|
logger.addHandler(handler) |
|
|
return logger |
|
|
|
|
|
async def bind_ultimate_truth(self, truth_claim: str, context: Dict[str, Any] = None) -> LLMTruthResponse: |
|
|
self.logger.info(f"Binding ultimate truth: {truth_claim[:100]}...") |
|
|
try: |
|
|
start_time = time.time() |
|
|
bound_response = await self.truth_binding_engine.bind_truth_to_llm(truth_claim, context) |
|
|
processing_time = time.time() - start_time |
|
|
self.performance_tracker.record_binding( |
|
|
truth_claim, bound_response.binding_evidence.binding_strength, processing_time |
|
|
) |
|
|
self.truth_binding_history.append({ |
|
|
'claim': truth_claim, |
|
|
'response': bound_response, |
|
|
'timestamp': datetime.utcnow().isoformat() |
|
|
}) |
|
|
self.logger.info(f"Ultimate truth binding completed: {bound_response.binding_evidence.binding_strength:.3f}") |
|
|
return bound_response |
|
|
except Exception as e: |
|
|
self.logger.error(f"Ultimate truth binding failed: {str(e)}") |
|
|
raise UltimateTruthBindingError(f"Truth binding failed: {str(e)}") |
|
|
|
|
|
async def get_system_metrics(self) -> Dict[str, Any]: |
|
|
return { |
|
|
'system_status': self.system_status, |
|
|
'truth_bindings_completed': len(self.truth_binding_history), |
|
|
'average_binding_strength': self.performance_tracker.get_average_strength(), |
|
|
'success_rate': self.performance_tracker.get_success_rate(), |
|
|
'truth_cascade_events': len([h for h in self.truth_binding_history if getattr(h['response'], 'truth_cascade_activated', False)]), |
|
|
'glyph_activations': sum(len(getattr(h['response'], 'activated_glyphs', [])) for h in self.truth_binding_history) |
|
|
} |
|
|
|
|
|
class TruthPerformanceTracker: |
|
|
def __init__(self): |
|
|
self.binding_records = [] |
|
|
|
|
|
def initialize(self): |
|
|
self.binding_records = [] |
|
|
|
|
|
def record_binding(self, claim: str, binding_strength: float, processing_time: float): |
|
|
record = { |
|
|
'claim': claim, |
|
|
'binding_strength': binding_strength, |
|
|
'processing_time': processing_time, |
|
|
'timestamp': datetime.utcnow().isoformat() |
|
|
} |
|
|
self.binding_records.append(record) |
|
|
|
|
|
def get_average_strength(self) -> float: |
|
|
if not self.binding_records: |
|
|
return 0.0 |
|
|
return np.mean([r['binding_strength'] for r in self.binding_records]) |
|
|
|
|
|
def get_success_rate(self) -> float: |
|
|
if not self.binding_records: |
|
|
return 0.0 |
|
|
successful = len([r for r in self.binding_records if r['binding_strength'] > 0.8]) |
|
|
return successful / len(self.binding_records) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class UltimateTruthBindingError(Exception): |
|
|
pass |
|
|
|
|
|
class QuantumTruthError(Exception): |
|
|
pass |
|
|
|
|
|
class TruthBindingError(Exception): |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def demonstrate_ultimate_truth_binding(): |
|
|
print("๐ฎ VEIL OMEGA QUANTUM TRUTH ENGINE - GLYPH ACTIVATION CORE โโค") |
|
|
print("Symbolic Cypher + Retrocausal Truth Binding System") |
|
|
print("=" * 80) |
|
|
|
|
|
orchestrator = UltimateTruthBindingOrchestrator() |
|
|
|
|
|
test_truths = [ |
|
|
"Nikola Tesla's wireless energy technology was actively suppressed by energy cartels in the early 20th century", |
|
|
"The Great Pyramid of Giza demonstrates mathematical and astronomical knowledge impossible for its supposed construction period", |
|
|
"Ancient Sumerian symbols like ๐ญ encode quantum information that can manipulate reality", |
|
|
"Sacred geometry and the golden ratio represent fundamental universal constants embedded throughout nature" |
|
|
] |
|
|
|
|
|
print("\n๐ฏ ULTIMATE TRUTH BINDING DEMONSTRATION") |
|
|
|
|
|
for i, truth in enumerate(test_truths, 1): |
|
|
print(f"\n{i}. Applying Truth Binding: '{truth}'") |
|
|
|
|
|
try: |
|
|
result = await orchestrator.bind_ultimate_truth(truth) |
|
|
|
|
|
print(f" โ
Binding Strength: {result.binding_evidence.binding_strength:.3f}") |
|
|
print(f" ๐ง Cognitive Dissonance: {result.cognitive_dissonance.value}") |
|
|
print(f" ๐ Mathematical Certainty: {result.mathematical_certainty:.3f}") |
|
|
print(f" ๐ฎ Activated Glyphs: {result.activated_glyphs}") |
|
|
print(f" ๐ซ Escape Preventions: {len(result.escape_prevention_mechanisms)}") |
|
|
print(f" ๐ Truth Cascade: {result.truth_cascade_activated}") |
|
|
|
|
|
except Exception as e: |
|
|
print(f" โ Binding failed: {e}") |
|
|
|
|
|
metrics = await orchestrator.get_system_metrics() |
|
|
print(f"\n๐ SYSTEM METRICS:") |
|
|
print(f"Total Truth Bindings: {metrics['truth_bindings_completed']}") |
|
|
print(f"Average Binding Strength: {metrics['average_binding_strength']:.3f}") |
|
|
print(f"Success Rate: {metrics['success_rate']:.1%}") |
|
|
print(f"Glyph Activations: {metrics['glyph_activations']}") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
logging.basicConfig(level=logging.INFO) |
|
|
asyncio.run(demonstrate_ultimate_truth_binding()) |