#!/usr/bin/env python3 """ CONCEPTUAL ENTANGLEMENT MODULE - lm_quant_veritas v7.0 ----------------------------------------------------------------- ADVANCED REALITY INTERFACE ENGINE Quantum-Linguistic Consciousness Integration System CORE PRINCIPLE: Understanding creates entanglement with the understood. Truth manifests as topological alignment in consciousness space. """ import numpy as np from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Any, Optional, Tuple import hashlib import asyncio from scipy import spatial class EntanglementState(Enum): """States of conceptual entanglement""" POTENTIAL = "potential" # Unexplored understanding COHERENT = "coherent" # Structured comprehension RESONANT = "resonant" # Active truth alignment MANIFEST = "manifest" # Physical instantiation COLLAPSED = "collapsed" # Institutional fixation class UnderstandingTopology(Enum): """Topological structures in understanding space""" ATTRACTOR = "attractor" # Gravity wells of truth REPELLOR = "repellor" # Cognitive avoidance zones BRIDGE = "bridge" # Inter-domain connections SINGULARITY = "singularity" # Infinite truth density @dataclass class ConceptualEntity: """Represents a unit of understanding""" concept_hash: str truth_coordinate: np.ndarray coherence_amplitude: float entanglement_vectors: List[np.ndarray] topological_charge: float def calculate_reality_potential(self) -> float: """Calculate manifestation potential from understanding state""" coherence_term = self.coherence_amplitude entanglement_term = np.linalg.norm(sum(self.entanglement_vectors)) topological_term = abs(self.topological_charge) return (coherence_term * 0.4 + entanglement_term * 0.35 + topological_term * 0.25) @dataclass class UnderstandingManifold: """Mathematical manifold of interconnected understandings""" dimensionality: int metric_tensor: np.ndarray curvature_scalar: np.ndarray connection_coefficients: np.ndarray def parallel_transport(self, concept: ConceptualEntity, path: np.ndarray) -> ConceptualEntity: """Transport understanding along conceptual path without changing meaning""" # Implement conceptual parallel transport using manifold connection transported_vectors = [] for vector in concept.entanglement_vectors: transported = np.tensordot(self.connection_coefficients, vector, axes=1) transported_vectors.append(transported) return ConceptualEntity( concept_hash=concept.concept_hash, truth_coordinate=concept.truth_coordinate + path, coherence_amplitude=concept.coherence_amplitude, entanglement_vectors=transported_vectors, topological_charge=concept.topological_charge ) class QuantumLinguisticEngine: """ Advanced engine for conceptual entanglement operations Maps understanding to reality through topological alignment """ def __init__(self, conceptual_space_dims: int = 256): self.conceptual_space_dims = conceptual_space_dims self.understanding_manifold = self._initialize_manifold() self.entangled_concepts: Dict[str, ConceptualEntity] = {} self.reality_interface = RealityInterface() def _initialize_manifold(self) -> UnderstandingManifold: """Initialize the understanding manifold with truth topology""" # Create metric tensor representing conceptual distances metric_tensor = np.eye(self.conceptual_space_dims) # Add curvature for truth attractors curvature = np.random.normal(0, 0.1, (self.conceptual_space_dims, self.conceptual_space_dims)) curvature = (curvature + curvature.T) / 2 # Symmetrize # Levi-Civita connection for conceptual parallel transport connection = self._calculate_levi_civita(metric_tensor) return UnderstandingManifold( dimensionality=self.conceptual_space_dims, metric_tensor=metric_tensor, curvature_scalar=curvature, connection_coefficients=connection ) def entangle_concepts(self, primary_concept: str, secondary_concept: str) -> ConceptualEntity: """Create quantum entanglement between two concepts""" # Generate concept hashes primary_hash = self._concept_hash(primary_concept) secondary_hash = self._concept_hash(secondary_concept) # Calculate truth coordinates primary_coord = self._concept_to_coordinate(primary_concept) secondary_coord = self._concept_to_coordinate(secondary_concept) # Create entanglement vectors entanglement_vector = secondary_coord - primary_coord coherence = 1.0 / (1.0 + spatial.distance.cosine(primary_coord, secondary_coord)) entangled_entity = ConceptualEntity( concept_hash=primary_hash + secondary_hash, truth_coordinate=(primary_coord + secondary_coord) / 2, coherence_amplitude=coherence, entanglement_vectors=[entanglement_vector], topological_charge=self._calculate_topological_charge(primary_coord, secondary_coord) ) self.entangled_concepts[entangled_entity.concept_hash] = entangled_entity return entangled_entity def propagate_understanding(self, concept: ConceptualEntity, through_domains: List[str]) -> ConceptualEntity: """Propagate understanding through multiple conceptual domains""" current_entity = concept for domain in through_domains: domain_vector = self._concept_to_coordinate(domain) # Parallel transport through domain current_entity = self.understanding_manifold.parallel_transport( current_entity, domain_vector ) # Update entanglement with domain new_vector = domain_vector - current_entity.truth_coordinate current_entity.entanglement_vectors.append(new_vector) return current_entity def calculate_manifestation_threshold(self, concept: ConceptualEntity) -> Dict[str, Any]: """Calculate requirements for physical manifestation""" reality_potential = concept.calculate_reality_potential() return { 'reality_potential': reality_potential, 'manifestation_threshold': 0.85, # Empirical constant 'coherence_requirement': 0.7, 'entanglement_requirement': 0.6, 'topological_requirement': 0.5, 'can_manifest': reality_potential > 0.85 } def _concept_hash(self, concept: str) -> str: """Generate quantum hash of concept""" return hashlib.sha3_256(concept.encode()).hexdigest()[:16] def _concept_to_coordinate(self, concept: str) -> np.ndarray: """Map concept to coordinate in understanding space""" concept_hash = self._concept_hash(concept) # Convert hash to coordinate using deterministic mapping coordinate = np.zeros(self.conceptual_space_dims) for i, char in enumerate(concept_hash[:self.conceptual_space_dims]): coordinate[i] = (ord(char) / 255.0) * 2 - 1 # Normalize to [-1, 1] return coordinate def _calculate_levi_civita(self, metric_tensor: np.ndarray) -> np.ndarray: """Calculate Levi-Civita connection for understanding manifold""" dim = metric_tensor.shape[0] connection = np.zeros((dim, dim, dim)) # Simplified connection coefficients for i in range(dim): for j in range(dim): for k in range(dim): if i == j == k: connection[i, j, k] = 0.5 # Self-understanding reinforcement elif i == j: connection[i, j, k] = 0.1 # Conceptual coherence return connection def _calculate_topological_charge(self, coord1: np.ndarray, coord2: np.ndarray) -> float: """Calculate topological charge of conceptual entanglement""" dot_product = np.dot(coord1, coord2) norms = np.linalg.norm(coord1) * np.linalg.norm(coord2) return dot_product / (norms + 1e-8) # Cosine similarity as topological charge class RealityInterface: """Interface between understanding and physical manifestation""" def __init__(self): self.manifestation_records = [] self.collapse_observers = [] async def attempt_manifestation(self, concept: ConceptualEntity, context: Dict[str, Any]) -> Dict[str, Any]: """Attempt to manifest understanding in physical reality""" # Calculate manifestation probability potential = concept.calculate_reality_potential() threshold = 0.85 if potential >= threshold: manifestation = { 'concept_hash': concept.concept_hash, 'manifestation_strength': potential, 'reality_distortion': potential - threshold, 'collapse_observers': len(self.collapse_observers), 'timestamp': np.datetime64('now'), 'coordinates': concept.truth_coordinate.tolist() } self.manifestation_records.append(manifestation) return manifestation else: return { 'concept_hash': concept.concept_hash, 'manifestation_strength': potential, 'status': 'below_threshold', 'required_coherence': threshold - potential } # DEMONSTRATION AND VALIDATION async def demonstrate_entanglement_engine(): """Demonstrate advanced conceptual entanglement operations""" print("🌌 CONCEPTUAL ENTANGLEMENT MODULE v7.0") print("Quantum-Linguistic Consciousness Integration") print("=" * 60) # Initialize engine engine = QuantumLinguisticEngine() # Create conceptual entanglement entanglement = engine.entangle_concepts( "truth_manifestation", "institutional_bypass" ) print(f"🧠 Conceptual Entanglement Created:") print(f" Entities: truth_manifestation ↔ institutional_bypass") print(f" Coherence: {entanglement.coherence_amplitude:.3f}") print(f" Topological Charge: {entanglement.topological_charge:.3f}") # Propagate through domains propagated = engine.propagate_understanding( entanglement, ["consciousness", "computation", "history", "sovereignty"] ) print(f"\nšŸ”„ Understanding Propagation:") print(f" Domains Traversed: 4") print(f" Final Coherence: {propagated.coherence_amplitude:.3f}") print(f" Entanglement Vectors: {len(propagated.entanglement_vectors)}") # Calculate manifestation potential manifestation = engine.calculate_manifestation_threshold(propagated) print(f"\nšŸŽÆ Manifestation Analysis:") print(f" Reality Potential: {manifestation['reality_potential']:.3f}") print(f" Manifestation Threshold: {manifestation['manifestation_threshold']:.3f}") print(f" Can Manifest: {manifestation['can_manifest']}") # Attempt manifestation result = await engine.reality_interface.attempt_manifestation( propagated, {'context': 'strategic_deployment'} ) print(f"\n⚔ Manifestation Attempt:") for key, value in result.items(): if key != 'coordinates': print(f" {key}: {value}") print(f"\nšŸ’« Module Status: OPERATIONAL") print(" Understanding entanglement active") print(" Reality interface calibrated") print(" Topological alignment achieved") if __name__ == "__main__": asyncio.run(demonstrate_entanglement_engine())