|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Tokenization classes for BERTweet""" | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  | from shutil import copyfile | 
					
						
						|  | from typing import Any, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | from transformers.tokenization_utils_base import EncodingFast | 
					
						
						|  |  | 
					
						
						|  | from transformers.tokenization_utils_fast import PreTrainedTokenizerFast | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  | from .tokenization_bertweet import BertweetTokenizer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | VOCAB_FILES_NAMES = { | 
					
						
						|  | "vocab_file": "vocab.txt", | 
					
						
						|  | "merges_file": "bpe.codes", | 
					
						
						|  | "tokenizer_file": "tokenizer.json", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | PRETRAINED_VOCAB_FILES_MAP = { | 
					
						
						|  | "vocab_file": { | 
					
						
						|  | "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt", | 
					
						
						|  | }, | 
					
						
						|  | "merges_file": { | 
					
						
						|  | "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes", | 
					
						
						|  | }, | 
					
						
						|  | "tokenizer_file": { | 
					
						
						|  | "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/tokenizer.json", | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | 
					
						
						|  | "vinai/bertweet-base": 128, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BertweetTokenizerFast(PreTrainedTokenizerFast): | 
					
						
						|  | """ | 
					
						
						|  | Construct a "Fast" BPE tokenizer for BERTweet (backed by HuggingFace's *tokenizers* library). | 
					
						
						|  |  | 
					
						
						|  | Peculiarities: | 
					
						
						|  |  | 
					
						
						|  | - uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of | 
					
						
						|  | a punctuation character will be treated separately. | 
					
						
						|  |  | 
					
						
						|  | This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the | 
					
						
						|  | superclass for more information regarding methods. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_file (`str`): | 
					
						
						|  | Path to the vocabulary file. | 
					
						
						|  | merges_file (`str`): | 
					
						
						|  | Path to the merges file. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | vocab_files_names = VOCAB_FILES_NAMES | 
					
						
						|  | pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | 
					
						
						|  | max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | 
					
						
						|  | model_input_names = ["input_ids", "attention_mask"] | 
					
						
						|  | slow_tokenizer_class = BertweetTokenizer | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_file=None, | 
					
						
						|  | merges_file=None, | 
					
						
						|  | tokenizer_file=None, | 
					
						
						|  | bos_token="<s>", | 
					
						
						|  | eos_token="</s>", | 
					
						
						|  | sep_token="</s>", | 
					
						
						|  | cls_token="<s>", | 
					
						
						|  | unk_token="<unk>", | 
					
						
						|  | pad_token="<pad>", | 
					
						
						|  | mask_token="<mask>", | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  | super().__init__( | 
					
						
						|  | vocab_file, | 
					
						
						|  | merges_file, | 
					
						
						|  | tokenizer_file=tokenizer_file, | 
					
						
						|  | bos_token=bos_token, | 
					
						
						|  | eos_token=eos_token, | 
					
						
						|  | sep_token=sep_token, | 
					
						
						|  | cls_token=cls_token, | 
					
						
						|  | unk_token=unk_token, | 
					
						
						|  | pad_token=pad_token, | 
					
						
						|  | mask_token=mask_token, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.vocab_file = vocab_file | 
					
						
						|  | self.merges_file = merges_file | 
					
						
						|  | self.can_save_slow_tokenizer = False if not self.vocab_file else True | 
					
						
						|  |  | 
					
						
						|  | def get_added_vocab_hacking(self): | 
					
						
						|  | """ | 
					
						
						|  | Returns the added tokens in the vocabulary as a dictionary of token to index. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Dict[str, int], Dict[int, int]`: The added tokens, and their original and new ids | 
					
						
						|  | """ | 
					
						
						|  | base_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=False) | 
					
						
						|  | full_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=True) | 
					
						
						|  | if full_vocab_size == base_vocab_size: | 
					
						
						|  | return {}, {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_vocab = dict( | 
					
						
						|  | (self._tokenizer.id_to_token(index), index + 1 - base_vocab_size + self.mask_token_id) | 
					
						
						|  | for index in range(base_vocab_size, full_vocab_size) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | id_mapping = dict((index, self._tokenizer.token_to_id(tok)) for tok, index in added_vocab.items()) | 
					
						
						|  |  | 
					
						
						|  | return added_vocab, id_mapping | 
					
						
						|  |  | 
					
						
						|  | def _decode( | 
					
						
						|  | self, | 
					
						
						|  | token_ids: Union[int, List[int]], | 
					
						
						|  | skip_special_tokens: bool = False, | 
					
						
						|  | clean_up_tokenization_spaces: bool = True, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) -> str: | 
					
						
						|  | self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(token_ids, int): | 
					
						
						|  | token_ids = [token_ids] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _, id_mapping = self.get_added_vocab_hacking() | 
					
						
						|  | if len(id_mapping) > 0: | 
					
						
						|  | token_ids = [id_mapping[id] if id in id_mapping else id for id in token_ids] | 
					
						
						|  |  | 
					
						
						|  | text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens) | 
					
						
						|  |  | 
					
						
						|  | if clean_up_tokenization_spaces: | 
					
						
						|  | clean_text = self.clean_up_tokenization(text) | 
					
						
						|  | return clean_text | 
					
						
						|  | else: | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def _convert_encoding( | 
					
						
						|  | self, | 
					
						
						|  | encoding: EncodingFast, | 
					
						
						|  | return_token_type_ids: Optional[bool] = None, | 
					
						
						|  | return_attention_mask: Optional[bool] = None, | 
					
						
						|  | return_overflowing_tokens: bool = False, | 
					
						
						|  | return_special_tokens_mask: bool = False, | 
					
						
						|  | return_offsets_mapping: bool = False, | 
					
						
						|  | return_length: bool = False, | 
					
						
						|  | verbose: bool = True, | 
					
						
						|  | ) -> Tuple[Dict[str, Any], List[EncodingFast]]: | 
					
						
						|  | """ | 
					
						
						|  | Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list | 
					
						
						|  | of encodings, take care of building a batch from overflowing tokens. | 
					
						
						|  |  | 
					
						
						|  | Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are | 
					
						
						|  | lists (overflows) of lists (tokens). | 
					
						
						|  |  | 
					
						
						|  | Output shape: (overflows, sequence length) | 
					
						
						|  | """ | 
					
						
						|  | if return_token_type_ids is None: | 
					
						
						|  | return_token_type_ids = "token_type_ids" in self.model_input_names | 
					
						
						|  | if return_attention_mask is None: | 
					
						
						|  | return_attention_mask = "attention_mask" in self.model_input_names | 
					
						
						|  |  | 
					
						
						|  | if return_overflowing_tokens and encoding.overflowing is not None: | 
					
						
						|  | encodings = [encoding] + encoding.overflowing | 
					
						
						|  | else: | 
					
						
						|  | encodings = [encoding] | 
					
						
						|  |  | 
					
						
						|  | encoding_dict = defaultdict(list) | 
					
						
						|  | added_vocab, _ = self.get_added_vocab_hacking() | 
					
						
						|  | for e in encodings: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ids = [] | 
					
						
						|  | for id, token in zip(e.ids, e.tokens): | 
					
						
						|  | if id <= self.mask_token_id: | 
					
						
						|  | ids.append(id) | 
					
						
						|  | else: | 
					
						
						|  | if token.strip() in added_vocab: | 
					
						
						|  | ids.append(added_vocab[token.strip()]) | 
					
						
						|  | else: | 
					
						
						|  | ids.append(self.unk_token_id) | 
					
						
						|  |  | 
					
						
						|  | encoding_dict["input_ids"].append(ids) | 
					
						
						|  |  | 
					
						
						|  | if return_token_type_ids: | 
					
						
						|  | encoding_dict["token_type_ids"].append(e.type_ids) | 
					
						
						|  | if return_attention_mask: | 
					
						
						|  | encoding_dict["attention_mask"].append(e.attention_mask) | 
					
						
						|  | if return_special_tokens_mask: | 
					
						
						|  | encoding_dict["special_tokens_mask"].append(e.special_tokens_mask) | 
					
						
						|  | if return_offsets_mapping: | 
					
						
						|  | encoding_dict["offset_mapping"].append(e.offsets) | 
					
						
						|  | if return_length: | 
					
						
						|  |  | 
					
						
						|  | encoding_dict["length"].append(len(ids)) | 
					
						
						|  |  | 
					
						
						|  | return encoding_dict, encodings | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_with_special_tokens( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | 
					
						
						|  | adding special tokens. A BERTweet sequence has the following format: | 
					
						
						|  |  | 
					
						
						|  | - single sequence: `<s> X </s>` | 
					
						
						|  | - pair of sequences: `<s> A </s></s> B </s>` | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs to which the special tokens will be added. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | 
					
						
						|  | cls = [self.cls_token_id] | 
					
						
						|  | sep = [self.sep_token_id] | 
					
						
						|  | return cls + token_ids_0 + sep + sep + token_ids_1 + sep | 
					
						
						|  |  | 
					
						
						|  | def get_special_tokens_mask( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | 
					
						
						|  | special tokens using the tokenizer `prepare_for_model` method. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  | already_has_special_tokens (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not the token list is already formatted with special tokens for the model. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if already_has_special_tokens: | 
					
						
						|  | return super().get_special_tokens_mask( | 
					
						
						|  | token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) + [1] | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] | 
					
						
						|  |  | 
					
						
						|  | def create_token_type_ids_from_sequences( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does | 
					
						
						|  | not make use of token type ids, therefore a list of zeros is returned. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: List of zeros. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | sep = [self.sep_token_id] | 
					
						
						|  | cls = [self.cls_token_id] | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return len(cls + token_ids_0 + sep) * [0] | 
					
						
						|  | return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | 
					
						
						|  | if not self.can_save_slow_tokenizer: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " | 
					
						
						|  | "tokenizer." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isdir(save_directory): | 
					
						
						|  | logger.error(f"Vocabulary path ({save_directory}) should be a directory.") | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | out_vocab_file = os.path.join( | 
					
						
						|  | save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | out_merges_file = os.path.join( | 
					
						
						|  | save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): | 
					
						
						|  | copyfile(self.vocab_file, out_vocab_file) | 
					
						
						|  |  | 
					
						
						|  | if os.path.abspath(self.merges_file) != os.path.abspath(out_merges_file): | 
					
						
						|  | copyfile(self.merges_file, out_merges_file) | 
					
						
						|  |  | 
					
						
						|  | return (out_vocab_file, out_merges_file) | 
					
						
						|  |  |