Hunyuan-Image-30-Qint4 / load_quantized_model.py
wikeeyang's picture
Upload load_quantized_model.py
56d9e9b verified
# load_quantized_model.py
import json
import torch
from safetensors.torch import load_file
from optimum.quanto import requantize, quantize, qint4
from hunyuan_image_3.hunyuan import HunyuanImage3ForCausalMM
from transformers import AutoConfig, QuantoConfig
from transformers.generation.utils import GenerationConfig
def load_quantized_hi3_m1(model_path):
print(f"Loading model architecture from {model_path} to CPU...")
Qmodel = HunyuanImage3ForCausalMM.from_pretrained(
model_path,
dtype=torch.bfloat16,
device_map=None,
attn_implementation="sdpa",
moe_impl="eager",
moe_drop_tokens=True,
trust_remote_code=True,
low_cpu_mem_usage=False,
)
print("Applying int4 quantization structure...")
quantize(Qmodel, weights=qint4)
print("Loading quantized weights...")
state_dict = load_file(f"{model_path}/model.safetensors")
Qmodel.load_state_dict(state_dict, strict=False, assign=True)
print("Moving quantized model to GPU...")
Qmodel = Qmodel.to("cuda")
return Qmodel
def load_quantized_hi3_m2(model_path):
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
state_dict = load_file(f"{model_path}/model.safetensors")
with open(f"{model_path}/quantization_map.json", "r") as f: quantization_map = json.load(f)
print("Create Meta model and Loading quantized weights to CPU...")
with torch.device('meta'): Qmodel = HunyuanImage3ForCausalMM(config)
Qmodel = Qmodel.to(torch.bfloat16)
requantize(Qmodel, state_dict, quantization_map, device=torch.device('cpu'))
generation_config = GenerationConfig.from_pretrained(model_path)
Qmodel.generation_config = generation_config
print("Moving quantized model to GPU...")
Qmodel = Qmodel.to(torch.device('cuda'))
return Qmodel
# modify your "app/pipeline.py" script as below:
# from load_quantized_model import load_quantized_hi3_m1, load_quantized_hi3_m2
# replace:
# self.model = HunyuanImage3ForCausalMM.from_pretrained(args.model_id, **kwargs)
# with:
# self.model = load_quantized_hi3_m1(args.model_id)
# or with:
# self.model = load_quantized_hi3_m2(args.model_id)