|
|
|
|
|
import json |
|
|
import torch |
|
|
from safetensors.torch import load_file |
|
|
from optimum.quanto import requantize, quantize, qint4 |
|
|
from hunyuan_image_3.hunyuan import HunyuanImage3ForCausalMM |
|
|
from transformers import AutoConfig, QuantoConfig |
|
|
from transformers.generation.utils import GenerationConfig |
|
|
|
|
|
|
|
|
def load_quantized_hi3_m1(model_path): |
|
|
print(f"Loading model architecture from {model_path} to CPU...") |
|
|
Qmodel = HunyuanImage3ForCausalMM.from_pretrained( |
|
|
model_path, |
|
|
dtype=torch.bfloat16, |
|
|
device_map=None, |
|
|
attn_implementation="sdpa", |
|
|
moe_impl="eager", |
|
|
moe_drop_tokens=True, |
|
|
trust_remote_code=True, |
|
|
low_cpu_mem_usage=False, |
|
|
) |
|
|
|
|
|
print("Applying int4 quantization structure...") |
|
|
quantize(Qmodel, weights=qint4) |
|
|
|
|
|
print("Loading quantized weights...") |
|
|
state_dict = load_file(f"{model_path}/model.safetensors") |
|
|
Qmodel.load_state_dict(state_dict, strict=False, assign=True) |
|
|
|
|
|
print("Moving quantized model to GPU...") |
|
|
Qmodel = Qmodel.to("cuda") |
|
|
|
|
|
return Qmodel |
|
|
|
|
|
|
|
|
def load_quantized_hi3_m2(model_path): |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) |
|
|
|
|
|
state_dict = load_file(f"{model_path}/model.safetensors") |
|
|
with open(f"{model_path}/quantization_map.json", "r") as f: quantization_map = json.load(f) |
|
|
|
|
|
print("Create Meta model and Loading quantized weights to CPU...") |
|
|
with torch.device('meta'): Qmodel = HunyuanImage3ForCausalMM(config) |
|
|
Qmodel = Qmodel.to(torch.bfloat16) |
|
|
requantize(Qmodel, state_dict, quantization_map, device=torch.device('cpu')) |
|
|
|
|
|
generation_config = GenerationConfig.from_pretrained(model_path) |
|
|
Qmodel.generation_config = generation_config |
|
|
|
|
|
print("Moving quantized model to GPU...") |
|
|
Qmodel = Qmodel.to(torch.device('cuda')) |
|
|
|
|
|
return Qmodel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|