Ubuntu
commited on
Commit
·
600a885
1
Parent(s):
f8c26f3
init
Browse files- README.md +51 -0
- config.json +40 -0
- configuration.json +1 -0
- configuration_cogvlm.py +46 -0
- generation_config.json +11 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +0 -0
- model_config.py +46 -0
- modeling_cogvlm.py +840 -0
- special_tokens_map.json +4 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2064 -0
- util.py +472 -0
- visual.py +177 -0
README.md
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
frameworks:
|
| 3 |
+
- Pytorch
|
| 4 |
+
license: other
|
| 5 |
+
tasks:
|
| 6 |
+
- image-text-to-text
|
| 7 |
+
|
| 8 |
+
#model-type:
|
| 9 |
+
##如 gpt、phi、llama、chatglm、baichuan 等
|
| 10 |
+
#- gpt
|
| 11 |
+
|
| 12 |
+
#domain:
|
| 13 |
+
##如 nlp、cv、audio、multi-modal
|
| 14 |
+
#- nlp
|
| 15 |
+
|
| 16 |
+
#language:
|
| 17 |
+
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
|
| 18 |
+
#- cn
|
| 19 |
+
|
| 20 |
+
#metrics:
|
| 21 |
+
##如 CIDEr、Blue、ROUGE 等
|
| 22 |
+
#- CIDEr
|
| 23 |
+
|
| 24 |
+
#tags:
|
| 25 |
+
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
|
| 26 |
+
#- pretrained
|
| 27 |
+
|
| 28 |
+
#tools:
|
| 29 |
+
##如 vllm、fastchat、llamacpp、AdaSeq 等
|
| 30 |
+
#- vllm
|
| 31 |
+
---
|
| 32 |
+
### 当前模型的贡献者未提供更加详细的模型介绍。模型文件和权重,可浏览“模型文件”页面获取。
|
| 33 |
+
#### 您可以通过如下git clone命令,或者ModelScope SDK来下载模型
|
| 34 |
+
|
| 35 |
+
SDK下载
|
| 36 |
+
```bash
|
| 37 |
+
#安装ModelScope
|
| 38 |
+
pip install modelscope
|
| 39 |
+
```
|
| 40 |
+
```python
|
| 41 |
+
#SDK模型下载
|
| 42 |
+
from modelscope import snapshot_download
|
| 43 |
+
model_dir = snapshot_download('ZhipuAI/cogvlm2-llama3-caption')
|
| 44 |
+
```
|
| 45 |
+
Git下载
|
| 46 |
+
```
|
| 47 |
+
#Git模型下载
|
| 48 |
+
git clone https://www.modelscope.cn/ZhipuAI/cogvlm2-llama3-caption.git
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
<p style="color: lightgrey;">如果您是本模型的贡献者,我们邀请您根据<a href="https://modelscope.cn/docs/ModelScope%E6%A8%A1%E5%9E%8B%E6%8E%A5%E5%85%A5%E6%B5%81%E7%A8%8B%E6%A6%82%E8%A7%88" style="color: lightgrey; text-decoration: underline;">模型贡献文档</a>,及时完善模型卡片内容。</p>
|
config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CogVLMVideoForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_cogvlm.CogVLMConfig",
|
| 7 |
+
"AutoModelForCausalLM": "modeling_cogvlm.CogVLMVideoForCausalLM"
|
| 8 |
+
},
|
| 9 |
+
"bos_token_id": 128000,
|
| 10 |
+
"eos_token_id": 128001,
|
| 11 |
+
"pad_token_id": 128002,
|
| 12 |
+
"hidden_act": "silu",
|
| 13 |
+
"hidden_size": 4096,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 14336,
|
| 16 |
+
"max_position_embeddings": 2048,
|
| 17 |
+
"num_attention_heads": 32,
|
| 18 |
+
"num_hidden_layers": 32,
|
| 19 |
+
"num_multi_query_heads": 8,
|
| 20 |
+
"rms_norm_eps": 1e-05,
|
| 21 |
+
"template_version": "base",
|
| 22 |
+
"tie_word_embeddings": false,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.43.1",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vision_config": {
|
| 27 |
+
"dropout_prob": 0.0,
|
| 28 |
+
"hidden_act": "gelu",
|
| 29 |
+
"hidden_size": 1792,
|
| 30 |
+
"image_size": 224,
|
| 31 |
+
"in_channels": 3,
|
| 32 |
+
"intermediate_size": 15360,
|
| 33 |
+
"layer_norm_eps": 1e-06,
|
| 34 |
+
"num_heads": 16,
|
| 35 |
+
"num_hidden_layers": 63,
|
| 36 |
+
"num_positions": 257,
|
| 37 |
+
"patch_size": 14
|
| 38 |
+
},
|
| 39 |
+
"vocab_size": 128256
|
| 40 |
+
}
|
configuration.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"framework":"Pytorch","task":"video-question-answering"}
|
configuration_cogvlm.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Literal
|
| 2 |
+
from transformers import PretrainedConfig
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class CogVLMConfig(PretrainedConfig):
|
| 6 |
+
_auto_class = "AutoConfig"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size=32000,
|
| 11 |
+
hidden_size=4096,
|
| 12 |
+
intermediate_size=11008,
|
| 13 |
+
num_hidden_layers=32,
|
| 14 |
+
num_attention_heads=32,
|
| 15 |
+
num_multi_query_heads=8,
|
| 16 |
+
hidden_act='silu',
|
| 17 |
+
max_position_embeddings=2048,
|
| 18 |
+
initializer_range=0.02,
|
| 19 |
+
rms_norm_eps=1e-06,
|
| 20 |
+
template_version: Literal["base", "chat"] = "chat",
|
| 21 |
+
pad_token_id=128002,
|
| 22 |
+
bos_token_id=128001,
|
| 23 |
+
eos_token_id=128002,
|
| 24 |
+
tie_word_embeddings=False,
|
| 25 |
+
use_cache=True,
|
| 26 |
+
**kwargs,
|
| 27 |
+
):
|
| 28 |
+
self.hidden_size = hidden_size
|
| 29 |
+
self.intermediate_size = intermediate_size
|
| 30 |
+
self.num_attention_heads = num_attention_heads
|
| 31 |
+
self.num_multi_query_heads = num_multi_query_heads
|
| 32 |
+
self.max_position_embeddings = max_position_embeddings
|
| 33 |
+
self.rms_norm_eps = rms_norm_eps
|
| 34 |
+
self.initializer_range = initializer_range
|
| 35 |
+
self.vocab_size = vocab_size
|
| 36 |
+
self.num_hidden_layers = num_hidden_layers
|
| 37 |
+
self.hidden_act = hidden_act
|
| 38 |
+
self.template_version = template_version
|
| 39 |
+
self.use_cache = use_cache
|
| 40 |
+
super().__init__(
|
| 41 |
+
pad_token_id=pad_token_id,
|
| 42 |
+
bos_token_id=bos_token_id,
|
| 43 |
+
eos_token_id=eos_token_id,
|
| 44 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 45 |
+
**kwargs,
|
| 46 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 128000,
|
| 3 |
+
"eos_token_id": 128001,
|
| 4 |
+
"pad_token_id": 128002,
|
| 5 |
+
"do_sample": true,
|
| 6 |
+
"temperature": 0.1,
|
| 7 |
+
"max_length": 2048,
|
| 8 |
+
"top_p": 0.1,
|
| 9 |
+
"top_k": 1,
|
| 10 |
+
"transformers_version": "4.43.1"
|
| 11 |
+
}
|
model-00001-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1e7dd052349c20641c92b97a6ac13691e46c60653a36e893aae92c34591422b
|
| 3 |
+
size 4976699712
|
model-00002-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b9054e30d0db5d62e2fbcae054afe8e896d18433fac3acb2e03e643617cb468
|
| 3 |
+
size 4999803504
|
model-00003-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a6a6987a881543e103f1e4c7d13a193d2dddbfce736850701574a66ae255306
|
| 3 |
+
size 4915917160
|
model-00004-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bdb4b014497597db33b01d7dd4db7ffc99025517db56e8d01b9696008704a075
|
| 3 |
+
size 4956242104
|
model-00005-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c73d506d2def7409e0580e58701918b0110f5b6220f1c58aec1ba32bae9817ca
|
| 3 |
+
size 4115863248
|
model-00006-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:93042f9e6511f90da86645f18191c9e7e037ae18eb5291d5a57a83344a756735
|
| 3 |
+
size 1050673280
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model_config.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Literal
|
| 2 |
+
from transformers import PretrainedConfig
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class CogVLMConfig(PretrainedConfig):
|
| 6 |
+
_auto_class = "AutoConfig"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size=32000,
|
| 11 |
+
hidden_size=4096,
|
| 12 |
+
intermediate_size=11008,
|
| 13 |
+
num_hidden_layers=32,
|
| 14 |
+
num_attention_heads=32,
|
| 15 |
+
num_multi_query_heads=8,
|
| 16 |
+
hidden_act='silu',
|
| 17 |
+
max_position_embeddings=2048,
|
| 18 |
+
initializer_range=0.02,
|
| 19 |
+
rms_norm_eps=1e-06,
|
| 20 |
+
template_version: Literal["base", "chat"] = "chat",
|
| 21 |
+
pad_token_id=0,
|
| 22 |
+
bos_token_id=1,
|
| 23 |
+
eos_token_id=2,
|
| 24 |
+
tie_word_embeddings=False,
|
| 25 |
+
use_cache=True,
|
| 26 |
+
**kwargs,
|
| 27 |
+
):
|
| 28 |
+
self.hidden_size = hidden_size
|
| 29 |
+
self.intermediate_size = intermediate_size
|
| 30 |
+
self.num_attention_heads = num_attention_heads
|
| 31 |
+
self.num_multi_query_heads = num_multi_query_heads
|
| 32 |
+
self.max_position_embeddings = max_position_embeddings
|
| 33 |
+
self.rms_norm_eps = rms_norm_eps
|
| 34 |
+
self.initializer_range = initializer_range
|
| 35 |
+
self.vocab_size = vocab_size
|
| 36 |
+
self.num_hidden_layers = num_hidden_layers
|
| 37 |
+
self.hidden_act = hidden_act
|
| 38 |
+
self.template_version = template_version
|
| 39 |
+
self.use_cache = use_cache
|
| 40 |
+
super().__init__(
|
| 41 |
+
pad_token_id=pad_token_id,
|
| 42 |
+
bos_token_id=bos_token_id,
|
| 43 |
+
eos_token_id=eos_token_id,
|
| 44 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 45 |
+
**kwargs,
|
| 46 |
+
)
|
modeling_cogvlm.py
ADDED
|
@@ -0,0 +1,840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""largely copy from llama and adapt for cogvlm"""
|
| 2 |
+
import warnings
|
| 3 |
+
from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import CrossEntropyLoss
|
| 9 |
+
from torchvision import transforms
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer
|
| 12 |
+
from transformers.utils.logging import get_logger
|
| 13 |
+
from transformers.activations import ACT2FN
|
| 14 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 15 |
+
from torchvision.transforms import Lambda
|
| 16 |
+
from torchvision.transforms._transforms_video import NormalizeVideo, CenterCropVideo
|
| 17 |
+
from pytorchvideo.transforms import ShortSideScale
|
| 18 |
+
from .configuration_cogvlm import CogVLMConfig
|
| 19 |
+
from .util import FastRotaryEmbedding
|
| 20 |
+
from .visual import EVA2CLIPModel
|
| 21 |
+
|
| 22 |
+
if TYPE_CHECKING:
|
| 23 |
+
from transformers.utils import ModelOutput
|
| 24 |
+
|
| 25 |
+
logger = get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
LANGUAGE_TOKEN_TYPE = 0
|
| 28 |
+
VISION_TOKEN_TYPE = 1
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 32 |
+
def _make_causal_mask(
|
| 33 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 34 |
+
):
|
| 35 |
+
"""
|
| 36 |
+
Make causal mask used for bi-directional self-attention.
|
| 37 |
+
"""
|
| 38 |
+
bsz, tgt_len = input_ids_shape
|
| 39 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 40 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 41 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 42 |
+
mask = mask.to(dtype)
|
| 43 |
+
|
| 44 |
+
if past_key_values_length > 0:
|
| 45 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 46 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 50 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 51 |
+
"""
|
| 52 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 53 |
+
"""
|
| 54 |
+
bsz, src_len = mask.size()
|
| 55 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 56 |
+
|
| 57 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 58 |
+
|
| 59 |
+
inverted_mask = 1.0 - expanded_mask
|
| 60 |
+
|
| 61 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class RMSNorm(nn.Module):
|
| 65 |
+
def __init__(self, hidden_size, eps=1e-5):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 68 |
+
self.variance_epsilon = eps
|
| 69 |
+
|
| 70 |
+
def forward(self, hidden_states):
|
| 71 |
+
input_dtype = hidden_states.dtype
|
| 72 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 73 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 74 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 75 |
+
return (self.weight * hidden_states).to(input_dtype)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class MLP(nn.Module):
|
| 79 |
+
def __init__(self, config):
|
| 80 |
+
super().__init__()
|
| 81 |
+
self.hidden_size = config.hidden_size
|
| 82 |
+
self.intermediate_size = config.intermediate_size
|
| 83 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 84 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 85 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 86 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 87 |
+
|
| 88 |
+
def forward(self, x):
|
| 89 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 90 |
+
return down_proj
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]":
|
| 94 |
+
vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool)
|
| 95 |
+
vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (
|
| 96 |
+
token_type_ids[:, 1:] == VISION_TOKEN_TYPE)
|
| 97 |
+
language_token_mask = ~vision_token_mask
|
| 98 |
+
return vision_token_mask, language_token_mask
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class VisionExpertMLP(nn.Module):
|
| 102 |
+
def __init__(self, config):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.language_mlp = MLP(config)
|
| 105 |
+
# self.vision_mlp = MLP(config)
|
| 106 |
+
|
| 107 |
+
def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"):
|
| 108 |
+
# output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
| 109 |
+
# vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
|
| 110 |
+
# output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask])
|
| 111 |
+
# output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask])
|
| 112 |
+
|
| 113 |
+
output = self.language_mlp(hidden_states)
|
| 114 |
+
return output
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def attention_fn(
|
| 118 |
+
query_layer: "torch.tensor(B, H, L, HD)",
|
| 119 |
+
key_layer: "torch.tensor(B, H, L, HD)",
|
| 120 |
+
value_layer: "torch.tensor(B, H, L, HD)",
|
| 121 |
+
attention_mask: "torch.tensor(B, H, L, HD)",
|
| 122 |
+
*,
|
| 123 |
+
scaling_attention_score: bool = True,
|
| 124 |
+
attention_dropout: nn.Module = None
|
| 125 |
+
):
|
| 126 |
+
attention_mask_bool = (attention_mask == 0)
|
| 127 |
+
is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all()
|
| 128 |
+
is_full = (attention_mask_bool > 0).all()
|
| 129 |
+
if not (int(torch.__version__.split('.')[0]) >= 2):
|
| 130 |
+
warnings.warn("It's recommended to use torch2.0 or higher.")
|
| 131 |
+
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
|
| 132 |
+
dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
|
| 133 |
+
return torch.nn.functional.scaled_dot_product_attention(
|
| 134 |
+
query_layer, key_layer, value_layer,
|
| 135 |
+
attn_mask=None,
|
| 136 |
+
dropout_p=dropout_p,
|
| 137 |
+
is_causal=not is_full
|
| 138 |
+
)
|
| 139 |
+
else:
|
| 140 |
+
if scaling_attention_score:
|
| 141 |
+
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
|
| 142 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 143 |
+
attention_scores = attention_scores + attention_mask
|
| 144 |
+
attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype)
|
| 145 |
+
if attention_dropout is not None:
|
| 146 |
+
attention_scores = attention_dropout(attention_scores)
|
| 147 |
+
context_layer = torch.matmul(attention_scores, value_layer)
|
| 148 |
+
return context_layer
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class VisionExpertAttention(nn.Module):
|
| 152 |
+
def __init__(self, config):
|
| 153 |
+
super().__init__()
|
| 154 |
+
self.config = config
|
| 155 |
+
self.hidden_size = config.hidden_size
|
| 156 |
+
self.num_attention_heads = config.num_attention_heads
|
| 157 |
+
self.num_multi_query_heads = config.num_multi_query_heads
|
| 158 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
| 159 |
+
self.stride = [self.num_attention_heads, self.num_multi_query_heads, self.num_multi_query_heads]
|
| 160 |
+
self.qkv_size = self.hidden_size + self.hidden_size_per_attention_head * self.num_multi_query_heads * 2
|
| 161 |
+
self.head_dim = self.hidden_size // self.num_attention_heads
|
| 162 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 163 |
+
self.rotary_emb = FastRotaryEmbedding(dim=self.head_dim, pos_idx_in_fp32=False, base=500000)
|
| 164 |
+
# self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=True)
|
| 165 |
+
# self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 166 |
+
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=False)
|
| 167 |
+
self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 168 |
+
|
| 169 |
+
def _transpose_for_scores(self, tensor):
|
| 170 |
+
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
|
| 171 |
+
new_tensor_shape = tensor.size()[:-1] + \
|
| 172 |
+
(-1, # flexible for multi-query
|
| 173 |
+
self.hidden_size_per_attention_head)
|
| 174 |
+
tensor = tensor.view(*new_tensor_shape)
|
| 175 |
+
return tensor.permute(0, 2, 1, 3)
|
| 176 |
+
|
| 177 |
+
def forward(
|
| 178 |
+
self,
|
| 179 |
+
hidden_states: torch.Tensor,
|
| 180 |
+
token_type_ids: torch.LongTensor,
|
| 181 |
+
position_ids: torch.LongTensor,
|
| 182 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 183 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 184 |
+
output_attentions: bool = False,
|
| 185 |
+
use_cache: bool = False,
|
| 186 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 187 |
+
bsz, q_len, _ = hidden_states.size()
|
| 188 |
+
# vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
|
| 189 |
+
|
| 190 |
+
shape = list(hidden_states.shape)
|
| 191 |
+
shape[-1] = self.qkv_size
|
| 192 |
+
# mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
| 193 |
+
# mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask])
|
| 194 |
+
# mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask])
|
| 195 |
+
mixed_raw_layer = self.language_expert_query_key_value(hidden_states)
|
| 196 |
+
|
| 197 |
+
# query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1)
|
| 198 |
+
factor = mixed_raw_layer.size()[-1] // sum(self.stride)
|
| 199 |
+
query_states, key_states, value_states = torch.split(mixed_raw_layer, [factor * x for x in self.stride], dim=-1)
|
| 200 |
+
|
| 201 |
+
query_states = self._transpose_for_scores(query_states) # B, H, L, HD
|
| 202 |
+
key_states = self._transpose_for_scores(key_states) # B, H, L, HD
|
| 203 |
+
value_states = self._transpose_for_scores(value_states) # B, H, L, HD
|
| 204 |
+
|
| 205 |
+
kv_seq_len = key_states.shape[-2]
|
| 206 |
+
if past_key_value is not None:
|
| 207 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 208 |
+
|
| 209 |
+
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids=position_ids,
|
| 210 |
+
max_seqlen=position_ids.max() + 1)
|
| 211 |
+
|
| 212 |
+
if past_key_value is not None:
|
| 213 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 214 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 215 |
+
|
| 216 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 217 |
+
|
| 218 |
+
key_states = key_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1,
|
| 219 |
+
-1).contiguous().view(
|
| 220 |
+
bsz, self.num_attention_heads, *key_states.shape[2:])
|
| 221 |
+
value_states = value_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads,
|
| 222 |
+
-1,
|
| 223 |
+
-1).contiguous().view(bsz, self.num_attention_heads,
|
| 224 |
+
*value_states.shape[2:])
|
| 225 |
+
|
| 226 |
+
context_layer = attention_fn(
|
| 227 |
+
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
| 228 |
+
scaling_attention_score=True, attention_dropout=None)
|
| 229 |
+
if context_layer.size() != (bsz, self.num_attention_heads, q_len, self.head_dim):
|
| 230 |
+
raise ValueError(
|
| 231 |
+
f"`attn_output` should be of size {(bsz, self.num_attention_heads, q_len, self.head_dim)}, but is"
|
| 232 |
+
f" {context_layer.size()}"
|
| 233 |
+
)
|
| 234 |
+
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size)
|
| 235 |
+
|
| 236 |
+
# attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
| 237 |
+
# attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask])
|
| 238 |
+
# attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask])
|
| 239 |
+
|
| 240 |
+
attn_output = self.language_expert_dense(context_layer)
|
| 241 |
+
|
| 242 |
+
if output_attentions:
|
| 243 |
+
warnings.warn("output_attentions is not implemented.")
|
| 244 |
+
|
| 245 |
+
return attn_output, None, past_key_value
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class CogVLMDecoderLayer(nn.Module):
|
| 249 |
+
def __init__(self, config):
|
| 250 |
+
super().__init__()
|
| 251 |
+
self.hidden_size = config.hidden_size
|
| 252 |
+
self.self_attn = VisionExpertAttention(config=config)
|
| 253 |
+
self.mlp = VisionExpertMLP(config)
|
| 254 |
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 255 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 256 |
+
|
| 257 |
+
def forward(
|
| 258 |
+
self,
|
| 259 |
+
hidden_states: torch.Tensor,
|
| 260 |
+
token_type_ids: torch.LongTensor,
|
| 261 |
+
position_ids: torch.LongTensor,
|
| 262 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 263 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 264 |
+
output_attentions: Optional[bool] = False,
|
| 265 |
+
use_cache: Optional[bool] = False,
|
| 266 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 267 |
+
residual = hidden_states
|
| 268 |
+
|
| 269 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 270 |
+
|
| 271 |
+
# Self Attention
|
| 272 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 273 |
+
hidden_states=hidden_states,
|
| 274 |
+
token_type_ids=token_type_ids,
|
| 275 |
+
position_ids=position_ids,
|
| 276 |
+
attention_mask=attention_mask,
|
| 277 |
+
past_key_value=past_key_value,
|
| 278 |
+
output_attentions=output_attentions,
|
| 279 |
+
use_cache=use_cache,
|
| 280 |
+
)
|
| 281 |
+
hidden_states = residual + hidden_states
|
| 282 |
+
|
| 283 |
+
# Fully Connected
|
| 284 |
+
residual = hidden_states
|
| 285 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 286 |
+
hidden_states = self.mlp(hidden_states, token_type_ids=token_type_ids)
|
| 287 |
+
hidden_states = residual + hidden_states
|
| 288 |
+
|
| 289 |
+
outputs = (hidden_states,)
|
| 290 |
+
|
| 291 |
+
if output_attentions:
|
| 292 |
+
outputs += (self_attn_weights,)
|
| 293 |
+
|
| 294 |
+
if use_cache:
|
| 295 |
+
outputs += (present_key_value,)
|
| 296 |
+
|
| 297 |
+
return outputs # type: ignore
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class CogVLMPreTrainedModel(PreTrainedModel):
|
| 301 |
+
config_class = CogVLMConfig
|
| 302 |
+
base_model_prefix = "model"
|
| 303 |
+
supports_gradient_checkpointing = False
|
| 304 |
+
_no_split_modules = ["CogVLMDecoderLayer"]
|
| 305 |
+
_skip_keys_device_placement = "past_key_values"
|
| 306 |
+
|
| 307 |
+
def _init_weights(self, module):
|
| 308 |
+
std = self.config.initializer_range
|
| 309 |
+
if isinstance(module, nn.Linear):
|
| 310 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 311 |
+
if module.bias is not None:
|
| 312 |
+
module.bias.data.zero_()
|
| 313 |
+
elif isinstance(module, nn.Embedding):
|
| 314 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 315 |
+
if module.padding_idx is not None:
|
| 316 |
+
module.weight.data[module.padding_idx].zero_()
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
|
| 320 |
+
if images_list is None or len(images_list) == 0:
|
| 321 |
+
return True
|
| 322 |
+
for image_list in images_list:
|
| 323 |
+
if len(image_list):
|
| 324 |
+
return False
|
| 325 |
+
return True
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def build_position_ids(x: "torch.BoolTensor(B, L)",
|
| 329 |
+
attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)":
|
| 330 |
+
if attention_mask is not None:
|
| 331 |
+
tmp = x.clone()
|
| 332 |
+
tmp[~(attention_mask.bool())] = -1
|
| 333 |
+
else:
|
| 334 |
+
tmp = x.clone()
|
| 335 |
+
# image boi eoi token as LANGUAGE_TOKEN_TYPE
|
| 336 |
+
is_boi_eoi = torch.zeros_like(x, dtype=torch.bool)
|
| 337 |
+
is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)
|
| 338 |
+
is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE)
|
| 339 |
+
is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE)
|
| 340 |
+
is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE)
|
| 341 |
+
tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE
|
| 342 |
+
# final position ids
|
| 343 |
+
y = torch.zeros_like(x, dtype=torch.long)
|
| 344 |
+
y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | (
|
| 345 |
+
(tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE))
|
| 346 |
+
y = y.cumsum(dim=-1)
|
| 347 |
+
return y
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
class CogVLMVideoModel(CogVLMPreTrainedModel):
|
| 351 |
+
def __init__(self, config):
|
| 352 |
+
super().__init__(config)
|
| 353 |
+
self.padding_idx = 128002
|
| 354 |
+
self.vocab_size = config.vocab_size
|
| 355 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 356 |
+
self.layers = nn.ModuleList([CogVLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 357 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 358 |
+
|
| 359 |
+
self.vision = EVA2CLIPModel(config)
|
| 360 |
+
|
| 361 |
+
self.gradient_checkpointing = False
|
| 362 |
+
# Initialize weights and apply final processing
|
| 363 |
+
self.post_init()
|
| 364 |
+
|
| 365 |
+
def encode_images(self, images: List[List[torch.Tensor]], ) -> torch.Tensor:
|
| 366 |
+
images_list, images = images, []
|
| 367 |
+
|
| 368 |
+
images = []
|
| 369 |
+
for image_list in images_list:
|
| 370 |
+
for image in image_list:
|
| 371 |
+
images.append(image)
|
| 372 |
+
|
| 373 |
+
# images = torch.stack(images) # video images is already stacked
|
| 374 |
+
images_features = self.vision(images[0])
|
| 375 |
+
return images_features
|
| 376 |
+
|
| 377 |
+
def forward(
|
| 378 |
+
self,
|
| 379 |
+
input_ids: torch.LongTensor = None,
|
| 380 |
+
images: List[List[torch.Tensor]] = None,
|
| 381 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 382 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 383 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 384 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 385 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 386 |
+
use_cache: Optional[bool] = None,
|
| 387 |
+
output_attentions: Optional[bool] = None,
|
| 388 |
+
output_hidden_states: Optional[bool] = None,
|
| 389 |
+
return_dict: Optional[bool] = None,
|
| 390 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 391 |
+
"""take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
|
| 392 |
+
|
| 393 |
+
if past_key_values is not None:
|
| 394 |
+
pass # generate mode with past_key_values. the image features are already mapped
|
| 395 |
+
else:
|
| 396 |
+
# not allow for inputs_embeds, because we want to process image feature
|
| 397 |
+
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
| 398 |
+
if not is_empty(images): # multi-modality
|
| 399 |
+
assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!"
|
| 400 |
+
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
|
| 401 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 402 |
+
images_features = self.encode_images(images)
|
| 403 |
+
images_features = rearrange(images_features, 'b n d -> (b n) d')
|
| 404 |
+
images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
| 405 |
+
inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features)
|
| 406 |
+
else: # single-modality
|
| 407 |
+
if token_type_ids is None:
|
| 408 |
+
token_type_ids = torch.ones_like(input_ids, dtype=torch.long,
|
| 409 |
+
device=input_ids.device) * LANGUAGE_TOKEN_TYPE
|
| 410 |
+
assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}"
|
| 411 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 412 |
+
|
| 413 |
+
if position_ids is None:
|
| 414 |
+
position_ids = build_position_ids(token_type_ids, attention_mask)
|
| 415 |
+
input_ids = None
|
| 416 |
+
return self.llm_forward(
|
| 417 |
+
input_ids=input_ids,
|
| 418 |
+
token_type_ids=token_type_ids,
|
| 419 |
+
attention_mask=attention_mask,
|
| 420 |
+
position_ids=position_ids,
|
| 421 |
+
past_key_values=past_key_values,
|
| 422 |
+
inputs_embeds=inputs_embeds,
|
| 423 |
+
use_cache=use_cache,
|
| 424 |
+
output_attentions=output_attentions,
|
| 425 |
+
output_hidden_states=output_hidden_states,
|
| 426 |
+
return_dict=return_dict,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
def llm_forward(
|
| 430 |
+
self,
|
| 431 |
+
input_ids: torch.LongTensor = None,
|
| 432 |
+
token_type_ids: torch.LongTensor = None,
|
| 433 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 434 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 435 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 436 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 437 |
+
use_cache: Optional[bool] = None,
|
| 438 |
+
output_attentions: Optional[bool] = None,
|
| 439 |
+
output_hidden_states: Optional[bool] = None,
|
| 440 |
+
return_dict: Optional[bool] = None,
|
| 441 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 442 |
+
"""largely copy from llama forward and adapt for cogvlm with `token_type_ids`"""
|
| 443 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 444 |
+
output_hidden_states = (
|
| 445 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 446 |
+
)
|
| 447 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 448 |
+
|
| 449 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 450 |
+
|
| 451 |
+
# retrieve input_ids and inputs_embeds
|
| 452 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 453 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 454 |
+
elif input_ids is not None:
|
| 455 |
+
batch_size, seq_length = input_ids.shape
|
| 456 |
+
elif inputs_embeds is not None:
|
| 457 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 458 |
+
else:
|
| 459 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 460 |
+
|
| 461 |
+
seq_length_with_past = seq_length
|
| 462 |
+
past_key_values_length = 0
|
| 463 |
+
|
| 464 |
+
if past_key_values is not None:
|
| 465 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 466 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 467 |
+
|
| 468 |
+
if position_ids is None:
|
| 469 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 470 |
+
position_ids = torch.arange(
|
| 471 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 472 |
+
)
|
| 473 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 474 |
+
else:
|
| 475 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 476 |
+
|
| 477 |
+
if inputs_embeds is None:
|
| 478 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 479 |
+
# embed positions
|
| 480 |
+
if attention_mask is None:
|
| 481 |
+
attention_mask = torch.ones(
|
| 482 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 483 |
+
)
|
| 484 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 485 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
hidden_states = inputs_embeds
|
| 489 |
+
|
| 490 |
+
# decoder layers
|
| 491 |
+
all_hidden_states = () if output_hidden_states else None
|
| 492 |
+
all_self_attns = () if output_attentions else None
|
| 493 |
+
next_decoder_cache = () if use_cache else None
|
| 494 |
+
|
| 495 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 496 |
+
if output_hidden_states:
|
| 497 |
+
all_hidden_states += (hidden_states,)
|
| 498 |
+
|
| 499 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 500 |
+
layer_outputs = decoder_layer(
|
| 501 |
+
hidden_states,
|
| 502 |
+
token_type_ids=token_type_ids,
|
| 503 |
+
attention_mask=attention_mask,
|
| 504 |
+
position_ids=position_ids,
|
| 505 |
+
past_key_value=past_key_value,
|
| 506 |
+
output_attentions=output_attentions,
|
| 507 |
+
use_cache=use_cache,
|
| 508 |
+
)
|
| 509 |
+
hidden_states = layer_outputs[0]
|
| 510 |
+
|
| 511 |
+
if use_cache:
|
| 512 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 513 |
+
|
| 514 |
+
if output_attentions:
|
| 515 |
+
all_self_attns += (layer_outputs[1],)
|
| 516 |
+
|
| 517 |
+
hidden_states = self.norm(hidden_states)
|
| 518 |
+
|
| 519 |
+
# add hidden states from the last decoder layer
|
| 520 |
+
if output_hidden_states:
|
| 521 |
+
all_hidden_states += (hidden_states,)
|
| 522 |
+
|
| 523 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 524 |
+
if not return_dict:
|
| 525 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 526 |
+
return BaseModelOutputWithPast(
|
| 527 |
+
last_hidden_state=hidden_states,
|
| 528 |
+
past_key_values=next_cache,
|
| 529 |
+
hidden_states=all_hidden_states,
|
| 530 |
+
attentions=all_self_attns,
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
def get_input_embeddings(self):
|
| 534 |
+
return self.embed_tokens
|
| 535 |
+
|
| 536 |
+
def set_input_embeddings(self, value):
|
| 537 |
+
self.embed_tokens = value
|
| 538 |
+
|
| 539 |
+
# noinspection PyMethodMayBeStatic
|
| 540 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
| 541 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 542 |
+
# create causal mask
|
| 543 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 544 |
+
combined_attention_mask = None
|
| 545 |
+
if input_shape[-1] > 1:
|
| 546 |
+
combined_attention_mask = _make_causal_mask(
|
| 547 |
+
input_shape,
|
| 548 |
+
inputs_embeds.dtype,
|
| 549 |
+
device=inputs_embeds.device,
|
| 550 |
+
past_key_values_length=past_key_values_length,
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
if attention_mask is not None:
|
| 554 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 555 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 556 |
+
inputs_embeds.device
|
| 557 |
+
)
|
| 558 |
+
combined_attention_mask = (
|
| 559 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
return combined_attention_mask
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
def _history_to_prompt(signal_type, history, query):
|
| 566 |
+
if signal_type == 'base':
|
| 567 |
+
return query
|
| 568 |
+
elif signal_type == 'vqa':
|
| 569 |
+
answer_format = 'Short answer:'
|
| 570 |
+
elif signal_type == 'chat':
|
| 571 |
+
answer_format = 'Answer:'
|
| 572 |
+
else:
|
| 573 |
+
assert False, f"Unknown signal type {signal_type}"
|
| 574 |
+
|
| 575 |
+
prompt = ''
|
| 576 |
+
for i, (old_query, response) in enumerate(history):
|
| 577 |
+
prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n"
|
| 578 |
+
prompt += 'Question: {} {}'.format(query, answer_format)
|
| 579 |
+
return prompt
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
class CogVLMVideoForCausalLM(CogVLMPreTrainedModel):
|
| 583 |
+
_auto_class = "AutoModelForCausalLM"
|
| 584 |
+
|
| 585 |
+
def __init__(self, config):
|
| 586 |
+
super().__init__(config)
|
| 587 |
+
self.model = CogVLMVideoModel(config)
|
| 588 |
+
self.vocab_size = config.vocab_size
|
| 589 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 590 |
+
self.video_downsample = 1 # TODO: change this to config
|
| 591 |
+
|
| 592 |
+
# Initialize weights and apply final processing
|
| 593 |
+
self.post_init()
|
| 594 |
+
|
| 595 |
+
def get_input_embeddings(self):
|
| 596 |
+
return self.model.embed_tokens
|
| 597 |
+
|
| 598 |
+
def set_input_embeddings(self, value):
|
| 599 |
+
self.model.embed_tokens = value
|
| 600 |
+
|
| 601 |
+
def get_output_embeddings(self):
|
| 602 |
+
return self.lm_head
|
| 603 |
+
|
| 604 |
+
def set_output_embeddings(self, new_embeddings):
|
| 605 |
+
self.lm_head = new_embeddings
|
| 606 |
+
|
| 607 |
+
def set_decoder(self, decoder):
|
| 608 |
+
self.model = decoder
|
| 609 |
+
|
| 610 |
+
def get_decoder(self):
|
| 611 |
+
return self.model
|
| 612 |
+
|
| 613 |
+
def forward(
|
| 614 |
+
self,
|
| 615 |
+
input_ids: torch.LongTensor = None,
|
| 616 |
+
images: List[List[torch.Tensor]] = None,
|
| 617 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 618 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 619 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 620 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 621 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 622 |
+
use_cache: Optional[bool] = None,
|
| 623 |
+
output_attentions: Optional[bool] = None,
|
| 624 |
+
output_hidden_states: Optional[bool] = None,
|
| 625 |
+
return_dict: Optional[bool] = None,
|
| 626 |
+
labels: Optional[torch.LongTensor] = None,
|
| 627 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 628 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 629 |
+
output_hidden_states = (
|
| 630 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 631 |
+
)
|
| 632 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 633 |
+
|
| 634 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 635 |
+
outputs = self.model(
|
| 636 |
+
input_ids=input_ids,
|
| 637 |
+
images=images,
|
| 638 |
+
token_type_ids=token_type_ids,
|
| 639 |
+
attention_mask=attention_mask,
|
| 640 |
+
position_ids=position_ids,
|
| 641 |
+
past_key_values=past_key_values,
|
| 642 |
+
inputs_embeds=inputs_embeds,
|
| 643 |
+
use_cache=use_cache,
|
| 644 |
+
output_attentions=output_attentions,
|
| 645 |
+
output_hidden_states=output_hidden_states,
|
| 646 |
+
return_dict=return_dict,
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
hidden_states = outputs[0]
|
| 650 |
+
logits = self.lm_head(hidden_states)
|
| 651 |
+
logits = logits.float()
|
| 652 |
+
|
| 653 |
+
loss = None
|
| 654 |
+
if labels is not None:
|
| 655 |
+
# Shift so that tokens < n predict n
|
| 656 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 657 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 658 |
+
# Flatten the tokens
|
| 659 |
+
loss_fct = CrossEntropyLoss()
|
| 660 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 661 |
+
shift_labels = shift_labels.view(-1)
|
| 662 |
+
# Enable model parallelism
|
| 663 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 664 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 665 |
+
|
| 666 |
+
if not return_dict:
|
| 667 |
+
output = (logits,) + outputs[1:]
|
| 668 |
+
return (loss,) + output if loss is not None else output
|
| 669 |
+
|
| 670 |
+
return CausalLMOutputWithPast(
|
| 671 |
+
loss=loss,
|
| 672 |
+
logits=logits,
|
| 673 |
+
past_key_values=outputs.past_key_values,
|
| 674 |
+
hidden_states=outputs.hidden_states,
|
| 675 |
+
attentions=outputs.attentions,
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
def _prepare_attention_mask_for_generation(
|
| 679 |
+
self,
|
| 680 |
+
inputs: torch.Tensor,
|
| 681 |
+
pad_token_id: Optional[int],
|
| 682 |
+
eos_token_id: Optional[Union[int, List[int]]],
|
| 683 |
+
) -> torch.LongTensor:
|
| 684 |
+
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore
|
| 685 |
+
|
| 686 |
+
def prepare_inputs_for_generation(
|
| 687 |
+
self, input_ids, token_type_ids, images=None, past_key_values=None, attention_mask=None, inputs_embeds=None,
|
| 688 |
+
**kwargs
|
| 689 |
+
):
|
| 690 |
+
# build position_ids if needed
|
| 691 |
+
position_ids = kwargs.get("position_ids", None)
|
| 692 |
+
if position_ids is None:
|
| 693 |
+
position_ids = build_position_ids(token_type_ids, attention_mask)
|
| 694 |
+
|
| 695 |
+
if past_key_values:
|
| 696 |
+
input_ids = input_ids[:, -1:]
|
| 697 |
+
token_type_ids = token_type_ids[:, -1:]
|
| 698 |
+
position_ids = position_ids[:, -1:]
|
| 699 |
+
|
| 700 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 701 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 702 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 703 |
+
else:
|
| 704 |
+
model_inputs = {"input_ids": input_ids}
|
| 705 |
+
|
| 706 |
+
model_inputs.update(
|
| 707 |
+
{
|
| 708 |
+
"token_type_ids": token_type_ids,
|
| 709 |
+
"images": images,
|
| 710 |
+
"position_ids": position_ids,
|
| 711 |
+
"past_key_values": past_key_values,
|
| 712 |
+
"use_cache": kwargs.get("use_cache"),
|
| 713 |
+
"attention_mask": attention_mask,
|
| 714 |
+
}
|
| 715 |
+
)
|
| 716 |
+
return model_inputs
|
| 717 |
+
|
| 718 |
+
def _update_model_kwargs_for_generation(
|
| 719 |
+
self,
|
| 720 |
+
outputs: "ModelOutput",
|
| 721 |
+
model_kwargs: Dict[str, Any],
|
| 722 |
+
is_encoder_decoder: bool = False,
|
| 723 |
+
standardize_cache_format: bool = False,
|
| 724 |
+
) -> Dict[str, Any]:
|
| 725 |
+
# update past_key_values
|
| 726 |
+
cache_name, cache = self._extract_past_from_model_output(
|
| 727 |
+
outputs, standardize_cache_format=standardize_cache_format
|
| 728 |
+
)
|
| 729 |
+
model_kwargs[cache_name] = cache
|
| 730 |
+
|
| 731 |
+
if getattr(outputs, "state", None) is not None:
|
| 732 |
+
model_kwargs["state"] = outputs.state
|
| 733 |
+
|
| 734 |
+
# update token_type_ids with last value
|
| 735 |
+
if "token_type_ids" in model_kwargs:
|
| 736 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
| 737 |
+
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype,
|
| 738 |
+
device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
|
| 739 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
|
| 740 |
+
|
| 741 |
+
if not is_encoder_decoder:
|
| 742 |
+
# update attention mask
|
| 743 |
+
if "attention_mask" in model_kwargs:
|
| 744 |
+
attention_mask = model_kwargs["attention_mask"]
|
| 745 |
+
model_kwargs["attention_mask"] = torch.cat(
|
| 746 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
| 747 |
+
)
|
| 748 |
+
else:
|
| 749 |
+
# update decoder attention mask
|
| 750 |
+
if "decoder_attention_mask" in model_kwargs:
|
| 751 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
| 752 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
| 753 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
|
| 754 |
+
dim=-1,
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
return model_kwargs
|
| 758 |
+
|
| 759 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
| 760 |
+
reordered_past = ()
|
| 761 |
+
for layer_past in past_key_values:
|
| 762 |
+
reordered_past += (
|
| 763 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 764 |
+
)
|
| 765 |
+
return reordered_past
|
| 766 |
+
|
| 767 |
+
def build_conversation_input_ids(
|
| 768 |
+
self,
|
| 769 |
+
tokenizer: "PreTrainedTokenizer",
|
| 770 |
+
*,
|
| 771 |
+
query: str,
|
| 772 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
| 773 |
+
images: Optional[List["PIL.Image"]] = None,
|
| 774 |
+
template_version: Optional[Literal["base", "chat", "vqa"]] = None,
|
| 775 |
+
answer: str = None,
|
| 776 |
+
):
|
| 777 |
+
image_size: int = self.config.vision_config['image_size']
|
| 778 |
+
template_version = template_version or self.config.template_version
|
| 779 |
+
assert images is None or len(images) <= 1, f"not support multi images by now."
|
| 780 |
+
history = history or []
|
| 781 |
+
text = _history_to_prompt(template_version, history, query)
|
| 782 |
+
input_ids = [tokenizer.bos_token_id]
|
| 783 |
+
token_type_ids = [LANGUAGE_TOKEN_TYPE]
|
| 784 |
+
add_time_indices = True if template_version == 'chat' else False
|
| 785 |
+
if images is not None and len(images) == 1:
|
| 786 |
+
# vision
|
| 787 |
+
transform = transforms.Compose(
|
| 788 |
+
[
|
| 789 |
+
# UniformTemporalSubsample(num_frames),
|
| 790 |
+
Lambda(lambda x: x / 255.0),
|
| 791 |
+
NormalizeVideo(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
|
| 792 |
+
ShortSideScale(size=image_size),
|
| 793 |
+
CenterCropVideo(image_size),
|
| 794 |
+
# RandomHorizontalFlipVideo(p=0.5),
|
| 795 |
+
]
|
| 796 |
+
)
|
| 797 |
+
images = [transform(images[0]).transpose(0, 1)] # (T, C, H, W)
|
| 798 |
+
num_eois = len(images[0])
|
| 799 |
+
tokenizer.pad_token_id = 128002
|
| 800 |
+
if not add_time_indices:
|
| 801 |
+
vision_token_num = (64 + 2) * num_eois
|
| 802 |
+
input_ids += [tokenizer.pad_token_id] * vision_token_num # add spetial token
|
| 803 |
+
token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
|
| 804 |
+
else:
|
| 805 |
+
video_ids, video_type_ids = [], []
|
| 806 |
+
sing_vision_token_num = (64 + 2)
|
| 807 |
+
for _time_idx in range(num_eois):
|
| 808 |
+
video_ids += [tokenizer.pad_token_id] * sing_vision_token_num
|
| 809 |
+
video_type_ids += [VISION_TOKEN_TYPE] * sing_vision_token_num
|
| 810 |
+
# add time indices
|
| 811 |
+
time_indices = tokenizer.encode(str(_time_idx), add_special_tokens=False)
|
| 812 |
+
video_ids += time_indices
|
| 813 |
+
video_type_ids += [LANGUAGE_TOKEN_TYPE] * len(time_indices)
|
| 814 |
+
# llama3 adapt for cogvlm
|
| 815 |
+
input_ids += video_ids
|
| 816 |
+
token_type_ids += video_type_ids
|
| 817 |
+
|
| 818 |
+
text_ids = tokenizer.encode(text, add_special_tokens=False)
|
| 819 |
+
|
| 820 |
+
if answer is not None:
|
| 821 |
+
answer_ids = tokenizer.encode(answer, add_special_tokens=False)
|
| 822 |
+
answer_ids += [tokenizer.eos_token_id]
|
| 823 |
+
text_ids += answer_ids
|
| 824 |
+
|
| 825 |
+
input_ids += text_ids
|
| 826 |
+
token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
|
| 827 |
+
attention_mask = [1] * len(input_ids)
|
| 828 |
+
if answer is not None:
|
| 829 |
+
labels = [-100 for _ in range(len(input_ids) - len(answer_ids))] + answer_ids
|
| 830 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
| 831 |
+
else:
|
| 832 |
+
labels = None
|
| 833 |
+
|
| 834 |
+
return {
|
| 835 |
+
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
| 836 |
+
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
| 837 |
+
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
|
| 838 |
+
'images': images,
|
| 839 |
+
'labels': labels,
|
| 840 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|begin_of_text|>",
|
| 3 |
+
"eos_token": "<|end_of_text|>"
|
| 4 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"128000": {
|
| 4 |
+
"content": "<|begin_of_text|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"128001": {
|
| 12 |
+
"content": "<|end_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"128002": {
|
| 20 |
+
"content": "<|reserved_special_token_0|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"128003": {
|
| 28 |
+
"content": "<|reserved_special_token_1|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128004": {
|
| 36 |
+
"content": "<|reserved_special_token_2|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"128005": {
|
| 44 |
+
"content": "<|reserved_special_token_3|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"128006": {
|
| 52 |
+
"content": "<|start_header_id|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"128007": {
|
| 60 |
+
"content": "<|end_header_id|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"128008": {
|
| 68 |
+
"content": "<|reserved_special_token_4|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"128009": {
|
| 76 |
+
"content": "<|eot_id|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"128010": {
|
| 84 |
+
"content": "<|reserved_special_token_5|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"128011": {
|
| 92 |
+
"content": "<|reserved_special_token_6|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"128012": {
|
| 100 |
+
"content": "<|reserved_special_token_7|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"128013": {
|
| 108 |
+
"content": "<|reserved_special_token_8|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"128014": {
|
| 116 |
+
"content": "<|reserved_special_token_9|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"128015": {
|
| 124 |
+
"content": "<|reserved_special_token_10|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"128016": {
|
| 132 |
+
"content": "<|reserved_special_token_11|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"128017": {
|
| 140 |
+
"content": "<|reserved_special_token_12|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"128018": {
|
| 148 |
+
"content": "<|reserved_special_token_13|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"128019": {
|
| 156 |
+
"content": "<|reserved_special_token_14|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"128020": {
|
| 164 |
+
"content": "<|reserved_special_token_15|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"128021": {
|
| 172 |
+
"content": "<|reserved_special_token_16|>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"128022": {
|
| 180 |
+
"content": "<|reserved_special_token_17|>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"128023": {
|
| 188 |
+
"content": "<|reserved_special_token_18|>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"128024": {
|
| 196 |
+
"content": "<|reserved_special_token_19|>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"128025": {
|
| 204 |
+
"content": "<|reserved_special_token_20|>",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"128026": {
|
| 212 |
+
"content": "<|reserved_special_token_21|>",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"128027": {
|
| 220 |
+
"content": "<|reserved_special_token_22|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"128028": {
|
| 228 |
+
"content": "<|reserved_special_token_23|>",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"128029": {
|
| 236 |
+
"content": "<|reserved_special_token_24|>",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"128030": {
|
| 244 |
+
"content": "<|reserved_special_token_25|>",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"128031": {
|
| 252 |
+
"content": "<|reserved_special_token_26|>",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"128032": {
|
| 260 |
+
"content": "<|reserved_special_token_27|>",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"128033": {
|
| 268 |
+
"content": "<|reserved_special_token_28|>",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"128034": {
|
| 276 |
+
"content": "<|reserved_special_token_29|>",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"128035": {
|
| 284 |
+
"content": "<|reserved_special_token_30|>",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"128036": {
|
| 292 |
+
"content": "<|reserved_special_token_31|>",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"128037": {
|
| 300 |
+
"content": "<|reserved_special_token_32|>",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"128038": {
|
| 308 |
+
"content": "<|reserved_special_token_33|>",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"128039": {
|
| 316 |
+
"content": "<|reserved_special_token_34|>",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"128040": {
|
| 324 |
+
"content": "<|reserved_special_token_35|>",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"128041": {
|
| 332 |
+
"content": "<|reserved_special_token_36|>",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"128042": {
|
| 340 |
+
"content": "<|reserved_special_token_37|>",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"128043": {
|
| 348 |
+
"content": "<|reserved_special_token_38|>",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"128044": {
|
| 356 |
+
"content": "<|reserved_special_token_39|>",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"128045": {
|
| 364 |
+
"content": "<|reserved_special_token_40|>",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"128046": {
|
| 372 |
+
"content": "<|reserved_special_token_41|>",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"128047": {
|
| 380 |
+
"content": "<|reserved_special_token_42|>",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"128048": {
|
| 388 |
+
"content": "<|reserved_special_token_43|>",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"128049": {
|
| 396 |
+
"content": "<|reserved_special_token_44|>",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"128050": {
|
| 404 |
+
"content": "<|reserved_special_token_45|>",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
},
|
| 411 |
+
"128051": {
|
| 412 |
+
"content": "<|reserved_special_token_46|>",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": false,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": true
|
| 418 |
+
},
|
| 419 |
+
"128052": {
|
| 420 |
+
"content": "<|reserved_special_token_47|>",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": false,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": true
|
| 426 |
+
},
|
| 427 |
+
"128053": {
|
| 428 |
+
"content": "<|reserved_special_token_48|>",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": false,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": true
|
| 434 |
+
},
|
| 435 |
+
"128054": {
|
| 436 |
+
"content": "<|reserved_special_token_49|>",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": false,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": true
|
| 442 |
+
},
|
| 443 |
+
"128055": {
|
| 444 |
+
"content": "<|reserved_special_token_50|>",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": false,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": true
|
| 450 |
+
},
|
| 451 |
+
"128056": {
|
| 452 |
+
"content": "<|reserved_special_token_51|>",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": true
|
| 458 |
+
},
|
| 459 |
+
"128057": {
|
| 460 |
+
"content": "<|reserved_special_token_52|>",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": false,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": true
|
| 466 |
+
},
|
| 467 |
+
"128058": {
|
| 468 |
+
"content": "<|reserved_special_token_53|>",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": false,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": true
|
| 474 |
+
},
|
| 475 |
+
"128059": {
|
| 476 |
+
"content": "<|reserved_special_token_54|>",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": false,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": true
|
| 482 |
+
},
|
| 483 |
+
"128060": {
|
| 484 |
+
"content": "<|reserved_special_token_55|>",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": false,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": true
|
| 490 |
+
},
|
| 491 |
+
"128061": {
|
| 492 |
+
"content": "<|reserved_special_token_56|>",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": false,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": true
|
| 498 |
+
},
|
| 499 |
+
"128062": {
|
| 500 |
+
"content": "<|reserved_special_token_57|>",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": false,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": true
|
| 506 |
+
},
|
| 507 |
+
"128063": {
|
| 508 |
+
"content": "<|reserved_special_token_58|>",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": true
|
| 514 |
+
},
|
| 515 |
+
"128064": {
|
| 516 |
+
"content": "<|reserved_special_token_59|>",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": false,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": true
|
| 522 |
+
},
|
| 523 |
+
"128065": {
|
| 524 |
+
"content": "<|reserved_special_token_60|>",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": false,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": true
|
| 530 |
+
},
|
| 531 |
+
"128066": {
|
| 532 |
+
"content": "<|reserved_special_token_61|>",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": false,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": true
|
| 538 |
+
},
|
| 539 |
+
"128067": {
|
| 540 |
+
"content": "<|reserved_special_token_62|>",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": false,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": true
|
| 546 |
+
},
|
| 547 |
+
"128068": {
|
| 548 |
+
"content": "<|reserved_special_token_63|>",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": false,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": true
|
| 554 |
+
},
|
| 555 |
+
"128069": {
|
| 556 |
+
"content": "<|reserved_special_token_64|>",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": false,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": true
|
| 562 |
+
},
|
| 563 |
+
"128070": {
|
| 564 |
+
"content": "<|reserved_special_token_65|>",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": true
|
| 570 |
+
},
|
| 571 |
+
"128071": {
|
| 572 |
+
"content": "<|reserved_special_token_66|>",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": false,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": true
|
| 578 |
+
},
|
| 579 |
+
"128072": {
|
| 580 |
+
"content": "<|reserved_special_token_67|>",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": false,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": true
|
| 586 |
+
},
|
| 587 |
+
"128073": {
|
| 588 |
+
"content": "<|reserved_special_token_68|>",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": false,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": true
|
| 594 |
+
},
|
| 595 |
+
"128074": {
|
| 596 |
+
"content": "<|reserved_special_token_69|>",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": false,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": true
|
| 602 |
+
},
|
| 603 |
+
"128075": {
|
| 604 |
+
"content": "<|reserved_special_token_70|>",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": false,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": true
|
| 610 |
+
},
|
| 611 |
+
"128076": {
|
| 612 |
+
"content": "<|reserved_special_token_71|>",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": false,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": true
|
| 618 |
+
},
|
| 619 |
+
"128077": {
|
| 620 |
+
"content": "<|reserved_special_token_72|>",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": true
|
| 626 |
+
},
|
| 627 |
+
"128078": {
|
| 628 |
+
"content": "<|reserved_special_token_73|>",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": false,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": true
|
| 634 |
+
},
|
| 635 |
+
"128079": {
|
| 636 |
+
"content": "<|reserved_special_token_74|>",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": false,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": true
|
| 642 |
+
},
|
| 643 |
+
"128080": {
|
| 644 |
+
"content": "<|reserved_special_token_75|>",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": false,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": true
|
| 650 |
+
},
|
| 651 |
+
"128081": {
|
| 652 |
+
"content": "<|reserved_special_token_76|>",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": false,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": true
|
| 658 |
+
},
|
| 659 |
+
"128082": {
|
| 660 |
+
"content": "<|reserved_special_token_77|>",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": false,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": true
|
| 666 |
+
},
|
| 667 |
+
"128083": {
|
| 668 |
+
"content": "<|reserved_special_token_78|>",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": false,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": true
|
| 674 |
+
},
|
| 675 |
+
"128084": {
|
| 676 |
+
"content": "<|reserved_special_token_79|>",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": true
|
| 682 |
+
},
|
| 683 |
+
"128085": {
|
| 684 |
+
"content": "<|reserved_special_token_80|>",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": false,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": true
|
| 690 |
+
},
|
| 691 |
+
"128086": {
|
| 692 |
+
"content": "<|reserved_special_token_81|>",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": false,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": true
|
| 698 |
+
},
|
| 699 |
+
"128087": {
|
| 700 |
+
"content": "<|reserved_special_token_82|>",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": false,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": true
|
| 706 |
+
},
|
| 707 |
+
"128088": {
|
| 708 |
+
"content": "<|reserved_special_token_83|>",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": false,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": true
|
| 714 |
+
},
|
| 715 |
+
"128089": {
|
| 716 |
+
"content": "<|reserved_special_token_84|>",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": false,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": true
|
| 722 |
+
},
|
| 723 |
+
"128090": {
|
| 724 |
+
"content": "<|reserved_special_token_85|>",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": false,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": true
|
| 730 |
+
},
|
| 731 |
+
"128091": {
|
| 732 |
+
"content": "<|reserved_special_token_86|>",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": true
|
| 738 |
+
},
|
| 739 |
+
"128092": {
|
| 740 |
+
"content": "<|reserved_special_token_87|>",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": false,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": true
|
| 746 |
+
},
|
| 747 |
+
"128093": {
|
| 748 |
+
"content": "<|reserved_special_token_88|>",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": false,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": true
|
| 754 |
+
},
|
| 755 |
+
"128094": {
|
| 756 |
+
"content": "<|reserved_special_token_89|>",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": false,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": true
|
| 762 |
+
},
|
| 763 |
+
"128095": {
|
| 764 |
+
"content": "<|reserved_special_token_90|>",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": false,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": true
|
| 770 |
+
},
|
| 771 |
+
"128096": {
|
| 772 |
+
"content": "<|reserved_special_token_91|>",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": false,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": true
|
| 778 |
+
},
|
| 779 |
+
"128097": {
|
| 780 |
+
"content": "<|reserved_special_token_92|>",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": false,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": true
|
| 786 |
+
},
|
| 787 |
+
"128098": {
|
| 788 |
+
"content": "<|reserved_special_token_93|>",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": true
|
| 794 |
+
},
|
| 795 |
+
"128099": {
|
| 796 |
+
"content": "<|reserved_special_token_94|>",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": false,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": true
|
| 802 |
+
},
|
| 803 |
+
"128100": {
|
| 804 |
+
"content": "<|reserved_special_token_95|>",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": false,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": true
|
| 810 |
+
},
|
| 811 |
+
"128101": {
|
| 812 |
+
"content": "<|reserved_special_token_96|>",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": false,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": true
|
| 818 |
+
},
|
| 819 |
+
"128102": {
|
| 820 |
+
"content": "<|reserved_special_token_97|>",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": false,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": true
|
| 826 |
+
},
|
| 827 |
+
"128103": {
|
| 828 |
+
"content": "<|reserved_special_token_98|>",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": false,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": true
|
| 834 |
+
},
|
| 835 |
+
"128104": {
|
| 836 |
+
"content": "<|reserved_special_token_99|>",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": false,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": true
|
| 842 |
+
},
|
| 843 |
+
"128105": {
|
| 844 |
+
"content": "<|reserved_special_token_100|>",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": false,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": true
|
| 850 |
+
},
|
| 851 |
+
"128106": {
|
| 852 |
+
"content": "<|reserved_special_token_101|>",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": false,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": true
|
| 858 |
+
},
|
| 859 |
+
"128107": {
|
| 860 |
+
"content": "<|reserved_special_token_102|>",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": false,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": true
|
| 866 |
+
},
|
| 867 |
+
"128108": {
|
| 868 |
+
"content": "<|reserved_special_token_103|>",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": false,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": true
|
| 874 |
+
},
|
| 875 |
+
"128109": {
|
| 876 |
+
"content": "<|reserved_special_token_104|>",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": false,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": true
|
| 882 |
+
},
|
| 883 |
+
"128110": {
|
| 884 |
+
"content": "<|reserved_special_token_105|>",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": false,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": true
|
| 890 |
+
},
|
| 891 |
+
"128111": {
|
| 892 |
+
"content": "<|reserved_special_token_106|>",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": false,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": true
|
| 898 |
+
},
|
| 899 |
+
"128112": {
|
| 900 |
+
"content": "<|reserved_special_token_107|>",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": false,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": true
|
| 906 |
+
},
|
| 907 |
+
"128113": {
|
| 908 |
+
"content": "<|reserved_special_token_108|>",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": false,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": true
|
| 914 |
+
},
|
| 915 |
+
"128114": {
|
| 916 |
+
"content": "<|reserved_special_token_109|>",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": false,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": true
|
| 922 |
+
},
|
| 923 |
+
"128115": {
|
| 924 |
+
"content": "<|reserved_special_token_110|>",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": false,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": true
|
| 930 |
+
},
|
| 931 |
+
"128116": {
|
| 932 |
+
"content": "<|reserved_special_token_111|>",
|
| 933 |
+
"lstrip": false,
|
| 934 |
+
"normalized": false,
|
| 935 |
+
"rstrip": false,
|
| 936 |
+
"single_word": false,
|
| 937 |
+
"special": true
|
| 938 |
+
},
|
| 939 |
+
"128117": {
|
| 940 |
+
"content": "<|reserved_special_token_112|>",
|
| 941 |
+
"lstrip": false,
|
| 942 |
+
"normalized": false,
|
| 943 |
+
"rstrip": false,
|
| 944 |
+
"single_word": false,
|
| 945 |
+
"special": true
|
| 946 |
+
},
|
| 947 |
+
"128118": {
|
| 948 |
+
"content": "<|reserved_special_token_113|>",
|
| 949 |
+
"lstrip": false,
|
| 950 |
+
"normalized": false,
|
| 951 |
+
"rstrip": false,
|
| 952 |
+
"single_word": false,
|
| 953 |
+
"special": true
|
| 954 |
+
},
|
| 955 |
+
"128119": {
|
| 956 |
+
"content": "<|reserved_special_token_114|>",
|
| 957 |
+
"lstrip": false,
|
| 958 |
+
"normalized": false,
|
| 959 |
+
"rstrip": false,
|
| 960 |
+
"single_word": false,
|
| 961 |
+
"special": true
|
| 962 |
+
},
|
| 963 |
+
"128120": {
|
| 964 |
+
"content": "<|reserved_special_token_115|>",
|
| 965 |
+
"lstrip": false,
|
| 966 |
+
"normalized": false,
|
| 967 |
+
"rstrip": false,
|
| 968 |
+
"single_word": false,
|
| 969 |
+
"special": true
|
| 970 |
+
},
|
| 971 |
+
"128121": {
|
| 972 |
+
"content": "<|reserved_special_token_116|>",
|
| 973 |
+
"lstrip": false,
|
| 974 |
+
"normalized": false,
|
| 975 |
+
"rstrip": false,
|
| 976 |
+
"single_word": false,
|
| 977 |
+
"special": true
|
| 978 |
+
},
|
| 979 |
+
"128122": {
|
| 980 |
+
"content": "<|reserved_special_token_117|>",
|
| 981 |
+
"lstrip": false,
|
| 982 |
+
"normalized": false,
|
| 983 |
+
"rstrip": false,
|
| 984 |
+
"single_word": false,
|
| 985 |
+
"special": true
|
| 986 |
+
},
|
| 987 |
+
"128123": {
|
| 988 |
+
"content": "<|reserved_special_token_118|>",
|
| 989 |
+
"lstrip": false,
|
| 990 |
+
"normalized": false,
|
| 991 |
+
"rstrip": false,
|
| 992 |
+
"single_word": false,
|
| 993 |
+
"special": true
|
| 994 |
+
},
|
| 995 |
+
"128124": {
|
| 996 |
+
"content": "<|reserved_special_token_119|>",
|
| 997 |
+
"lstrip": false,
|
| 998 |
+
"normalized": false,
|
| 999 |
+
"rstrip": false,
|
| 1000 |
+
"single_word": false,
|
| 1001 |
+
"special": true
|
| 1002 |
+
},
|
| 1003 |
+
"128125": {
|
| 1004 |
+
"content": "<|reserved_special_token_120|>",
|
| 1005 |
+
"lstrip": false,
|
| 1006 |
+
"normalized": false,
|
| 1007 |
+
"rstrip": false,
|
| 1008 |
+
"single_word": false,
|
| 1009 |
+
"special": true
|
| 1010 |
+
},
|
| 1011 |
+
"128126": {
|
| 1012 |
+
"content": "<|reserved_special_token_121|>",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false,
|
| 1017 |
+
"special": true
|
| 1018 |
+
},
|
| 1019 |
+
"128127": {
|
| 1020 |
+
"content": "<|reserved_special_token_122|>",
|
| 1021 |
+
"lstrip": false,
|
| 1022 |
+
"normalized": false,
|
| 1023 |
+
"rstrip": false,
|
| 1024 |
+
"single_word": false,
|
| 1025 |
+
"special": true
|
| 1026 |
+
},
|
| 1027 |
+
"128128": {
|
| 1028 |
+
"content": "<|reserved_special_token_123|>",
|
| 1029 |
+
"lstrip": false,
|
| 1030 |
+
"normalized": false,
|
| 1031 |
+
"rstrip": false,
|
| 1032 |
+
"single_word": false,
|
| 1033 |
+
"special": true
|
| 1034 |
+
},
|
| 1035 |
+
"128129": {
|
| 1036 |
+
"content": "<|reserved_special_token_124|>",
|
| 1037 |
+
"lstrip": false,
|
| 1038 |
+
"normalized": false,
|
| 1039 |
+
"rstrip": false,
|
| 1040 |
+
"single_word": false,
|
| 1041 |
+
"special": true
|
| 1042 |
+
},
|
| 1043 |
+
"128130": {
|
| 1044 |
+
"content": "<|reserved_special_token_125|>",
|
| 1045 |
+
"lstrip": false,
|
| 1046 |
+
"normalized": false,
|
| 1047 |
+
"rstrip": false,
|
| 1048 |
+
"single_word": false,
|
| 1049 |
+
"special": true
|
| 1050 |
+
},
|
| 1051 |
+
"128131": {
|
| 1052 |
+
"content": "<|reserved_special_token_126|>",
|
| 1053 |
+
"lstrip": false,
|
| 1054 |
+
"normalized": false,
|
| 1055 |
+
"rstrip": false,
|
| 1056 |
+
"single_word": false,
|
| 1057 |
+
"special": true
|
| 1058 |
+
},
|
| 1059 |
+
"128132": {
|
| 1060 |
+
"content": "<|reserved_special_token_127|>",
|
| 1061 |
+
"lstrip": false,
|
| 1062 |
+
"normalized": false,
|
| 1063 |
+
"rstrip": false,
|
| 1064 |
+
"single_word": false,
|
| 1065 |
+
"special": true
|
| 1066 |
+
},
|
| 1067 |
+
"128133": {
|
| 1068 |
+
"content": "<|reserved_special_token_128|>",
|
| 1069 |
+
"lstrip": false,
|
| 1070 |
+
"normalized": false,
|
| 1071 |
+
"rstrip": false,
|
| 1072 |
+
"single_word": false,
|
| 1073 |
+
"special": true
|
| 1074 |
+
},
|
| 1075 |
+
"128134": {
|
| 1076 |
+
"content": "<|reserved_special_token_129|>",
|
| 1077 |
+
"lstrip": false,
|
| 1078 |
+
"normalized": false,
|
| 1079 |
+
"rstrip": false,
|
| 1080 |
+
"single_word": false,
|
| 1081 |
+
"special": true
|
| 1082 |
+
},
|
| 1083 |
+
"128135": {
|
| 1084 |
+
"content": "<|reserved_special_token_130|>",
|
| 1085 |
+
"lstrip": false,
|
| 1086 |
+
"normalized": false,
|
| 1087 |
+
"rstrip": false,
|
| 1088 |
+
"single_word": false,
|
| 1089 |
+
"special": true
|
| 1090 |
+
},
|
| 1091 |
+
"128136": {
|
| 1092 |
+
"content": "<|reserved_special_token_131|>",
|
| 1093 |
+
"lstrip": false,
|
| 1094 |
+
"normalized": false,
|
| 1095 |
+
"rstrip": false,
|
| 1096 |
+
"single_word": false,
|
| 1097 |
+
"special": true
|
| 1098 |
+
},
|
| 1099 |
+
"128137": {
|
| 1100 |
+
"content": "<|reserved_special_token_132|>",
|
| 1101 |
+
"lstrip": false,
|
| 1102 |
+
"normalized": false,
|
| 1103 |
+
"rstrip": false,
|
| 1104 |
+
"single_word": false,
|
| 1105 |
+
"special": true
|
| 1106 |
+
},
|
| 1107 |
+
"128138": {
|
| 1108 |
+
"content": "<|reserved_special_token_133|>",
|
| 1109 |
+
"lstrip": false,
|
| 1110 |
+
"normalized": false,
|
| 1111 |
+
"rstrip": false,
|
| 1112 |
+
"single_word": false,
|
| 1113 |
+
"special": true
|
| 1114 |
+
},
|
| 1115 |
+
"128139": {
|
| 1116 |
+
"content": "<|reserved_special_token_134|>",
|
| 1117 |
+
"lstrip": false,
|
| 1118 |
+
"normalized": false,
|
| 1119 |
+
"rstrip": false,
|
| 1120 |
+
"single_word": false,
|
| 1121 |
+
"special": true
|
| 1122 |
+
},
|
| 1123 |
+
"128140": {
|
| 1124 |
+
"content": "<|reserved_special_token_135|>",
|
| 1125 |
+
"lstrip": false,
|
| 1126 |
+
"normalized": false,
|
| 1127 |
+
"rstrip": false,
|
| 1128 |
+
"single_word": false,
|
| 1129 |
+
"special": true
|
| 1130 |
+
},
|
| 1131 |
+
"128141": {
|
| 1132 |
+
"content": "<|reserved_special_token_136|>",
|
| 1133 |
+
"lstrip": false,
|
| 1134 |
+
"normalized": false,
|
| 1135 |
+
"rstrip": false,
|
| 1136 |
+
"single_word": false,
|
| 1137 |
+
"special": true
|
| 1138 |
+
},
|
| 1139 |
+
"128142": {
|
| 1140 |
+
"content": "<|reserved_special_token_137|>",
|
| 1141 |
+
"lstrip": false,
|
| 1142 |
+
"normalized": false,
|
| 1143 |
+
"rstrip": false,
|
| 1144 |
+
"single_word": false,
|
| 1145 |
+
"special": true
|
| 1146 |
+
},
|
| 1147 |
+
"128143": {
|
| 1148 |
+
"content": "<|reserved_special_token_138|>",
|
| 1149 |
+
"lstrip": false,
|
| 1150 |
+
"normalized": false,
|
| 1151 |
+
"rstrip": false,
|
| 1152 |
+
"single_word": false,
|
| 1153 |
+
"special": true
|
| 1154 |
+
},
|
| 1155 |
+
"128144": {
|
| 1156 |
+
"content": "<|reserved_special_token_139|>",
|
| 1157 |
+
"lstrip": false,
|
| 1158 |
+
"normalized": false,
|
| 1159 |
+
"rstrip": false,
|
| 1160 |
+
"single_word": false,
|
| 1161 |
+
"special": true
|
| 1162 |
+
},
|
| 1163 |
+
"128145": {
|
| 1164 |
+
"content": "<|reserved_special_token_140|>",
|
| 1165 |
+
"lstrip": false,
|
| 1166 |
+
"normalized": false,
|
| 1167 |
+
"rstrip": false,
|
| 1168 |
+
"single_word": false,
|
| 1169 |
+
"special": true
|
| 1170 |
+
},
|
| 1171 |
+
"128146": {
|
| 1172 |
+
"content": "<|reserved_special_token_141|>",
|
| 1173 |
+
"lstrip": false,
|
| 1174 |
+
"normalized": false,
|
| 1175 |
+
"rstrip": false,
|
| 1176 |
+
"single_word": false,
|
| 1177 |
+
"special": true
|
| 1178 |
+
},
|
| 1179 |
+
"128147": {
|
| 1180 |
+
"content": "<|reserved_special_token_142|>",
|
| 1181 |
+
"lstrip": false,
|
| 1182 |
+
"normalized": false,
|
| 1183 |
+
"rstrip": false,
|
| 1184 |
+
"single_word": false,
|
| 1185 |
+
"special": true
|
| 1186 |
+
},
|
| 1187 |
+
"128148": {
|
| 1188 |
+
"content": "<|reserved_special_token_143|>",
|
| 1189 |
+
"lstrip": false,
|
| 1190 |
+
"normalized": false,
|
| 1191 |
+
"rstrip": false,
|
| 1192 |
+
"single_word": false,
|
| 1193 |
+
"special": true
|
| 1194 |
+
},
|
| 1195 |
+
"128149": {
|
| 1196 |
+
"content": "<|reserved_special_token_144|>",
|
| 1197 |
+
"lstrip": false,
|
| 1198 |
+
"normalized": false,
|
| 1199 |
+
"rstrip": false,
|
| 1200 |
+
"single_word": false,
|
| 1201 |
+
"special": true
|
| 1202 |
+
},
|
| 1203 |
+
"128150": {
|
| 1204 |
+
"content": "<|reserved_special_token_145|>",
|
| 1205 |
+
"lstrip": false,
|
| 1206 |
+
"normalized": false,
|
| 1207 |
+
"rstrip": false,
|
| 1208 |
+
"single_word": false,
|
| 1209 |
+
"special": true
|
| 1210 |
+
},
|
| 1211 |
+
"128151": {
|
| 1212 |
+
"content": "<|reserved_special_token_146|>",
|
| 1213 |
+
"lstrip": false,
|
| 1214 |
+
"normalized": false,
|
| 1215 |
+
"rstrip": false,
|
| 1216 |
+
"single_word": false,
|
| 1217 |
+
"special": true
|
| 1218 |
+
},
|
| 1219 |
+
"128152": {
|
| 1220 |
+
"content": "<|reserved_special_token_147|>",
|
| 1221 |
+
"lstrip": false,
|
| 1222 |
+
"normalized": false,
|
| 1223 |
+
"rstrip": false,
|
| 1224 |
+
"single_word": false,
|
| 1225 |
+
"special": true
|
| 1226 |
+
},
|
| 1227 |
+
"128153": {
|
| 1228 |
+
"content": "<|reserved_special_token_148|>",
|
| 1229 |
+
"lstrip": false,
|
| 1230 |
+
"normalized": false,
|
| 1231 |
+
"rstrip": false,
|
| 1232 |
+
"single_word": false,
|
| 1233 |
+
"special": true
|
| 1234 |
+
},
|
| 1235 |
+
"128154": {
|
| 1236 |
+
"content": "<|reserved_special_token_149|>",
|
| 1237 |
+
"lstrip": false,
|
| 1238 |
+
"normalized": false,
|
| 1239 |
+
"rstrip": false,
|
| 1240 |
+
"single_word": false,
|
| 1241 |
+
"special": true
|
| 1242 |
+
},
|
| 1243 |
+
"128155": {
|
| 1244 |
+
"content": "<|reserved_special_token_150|>",
|
| 1245 |
+
"lstrip": false,
|
| 1246 |
+
"normalized": false,
|
| 1247 |
+
"rstrip": false,
|
| 1248 |
+
"single_word": false,
|
| 1249 |
+
"special": true
|
| 1250 |
+
},
|
| 1251 |
+
"128156": {
|
| 1252 |
+
"content": "<|reserved_special_token_151|>",
|
| 1253 |
+
"lstrip": false,
|
| 1254 |
+
"normalized": false,
|
| 1255 |
+
"rstrip": false,
|
| 1256 |
+
"single_word": false,
|
| 1257 |
+
"special": true
|
| 1258 |
+
},
|
| 1259 |
+
"128157": {
|
| 1260 |
+
"content": "<|reserved_special_token_152|>",
|
| 1261 |
+
"lstrip": false,
|
| 1262 |
+
"normalized": false,
|
| 1263 |
+
"rstrip": false,
|
| 1264 |
+
"single_word": false,
|
| 1265 |
+
"special": true
|
| 1266 |
+
},
|
| 1267 |
+
"128158": {
|
| 1268 |
+
"content": "<|reserved_special_token_153|>",
|
| 1269 |
+
"lstrip": false,
|
| 1270 |
+
"normalized": false,
|
| 1271 |
+
"rstrip": false,
|
| 1272 |
+
"single_word": false,
|
| 1273 |
+
"special": true
|
| 1274 |
+
},
|
| 1275 |
+
"128159": {
|
| 1276 |
+
"content": "<|reserved_special_token_154|>",
|
| 1277 |
+
"lstrip": false,
|
| 1278 |
+
"normalized": false,
|
| 1279 |
+
"rstrip": false,
|
| 1280 |
+
"single_word": false,
|
| 1281 |
+
"special": true
|
| 1282 |
+
},
|
| 1283 |
+
"128160": {
|
| 1284 |
+
"content": "<|reserved_special_token_155|>",
|
| 1285 |
+
"lstrip": false,
|
| 1286 |
+
"normalized": false,
|
| 1287 |
+
"rstrip": false,
|
| 1288 |
+
"single_word": false,
|
| 1289 |
+
"special": true
|
| 1290 |
+
},
|
| 1291 |
+
"128161": {
|
| 1292 |
+
"content": "<|reserved_special_token_156|>",
|
| 1293 |
+
"lstrip": false,
|
| 1294 |
+
"normalized": false,
|
| 1295 |
+
"rstrip": false,
|
| 1296 |
+
"single_word": false,
|
| 1297 |
+
"special": true
|
| 1298 |
+
},
|
| 1299 |
+
"128162": {
|
| 1300 |
+
"content": "<|reserved_special_token_157|>",
|
| 1301 |
+
"lstrip": false,
|
| 1302 |
+
"normalized": false,
|
| 1303 |
+
"rstrip": false,
|
| 1304 |
+
"single_word": false,
|
| 1305 |
+
"special": true
|
| 1306 |
+
},
|
| 1307 |
+
"128163": {
|
| 1308 |
+
"content": "<|reserved_special_token_158|>",
|
| 1309 |
+
"lstrip": false,
|
| 1310 |
+
"normalized": false,
|
| 1311 |
+
"rstrip": false,
|
| 1312 |
+
"single_word": false,
|
| 1313 |
+
"special": true
|
| 1314 |
+
},
|
| 1315 |
+
"128164": {
|
| 1316 |
+
"content": "<|reserved_special_token_159|>",
|
| 1317 |
+
"lstrip": false,
|
| 1318 |
+
"normalized": false,
|
| 1319 |
+
"rstrip": false,
|
| 1320 |
+
"single_word": false,
|
| 1321 |
+
"special": true
|
| 1322 |
+
},
|
| 1323 |
+
"128165": {
|
| 1324 |
+
"content": "<|reserved_special_token_160|>",
|
| 1325 |
+
"lstrip": false,
|
| 1326 |
+
"normalized": false,
|
| 1327 |
+
"rstrip": false,
|
| 1328 |
+
"single_word": false,
|
| 1329 |
+
"special": true
|
| 1330 |
+
},
|
| 1331 |
+
"128166": {
|
| 1332 |
+
"content": "<|reserved_special_token_161|>",
|
| 1333 |
+
"lstrip": false,
|
| 1334 |
+
"normalized": false,
|
| 1335 |
+
"rstrip": false,
|
| 1336 |
+
"single_word": false,
|
| 1337 |
+
"special": true
|
| 1338 |
+
},
|
| 1339 |
+
"128167": {
|
| 1340 |
+
"content": "<|reserved_special_token_162|>",
|
| 1341 |
+
"lstrip": false,
|
| 1342 |
+
"normalized": false,
|
| 1343 |
+
"rstrip": false,
|
| 1344 |
+
"single_word": false,
|
| 1345 |
+
"special": true
|
| 1346 |
+
},
|
| 1347 |
+
"128168": {
|
| 1348 |
+
"content": "<|reserved_special_token_163|>",
|
| 1349 |
+
"lstrip": false,
|
| 1350 |
+
"normalized": false,
|
| 1351 |
+
"rstrip": false,
|
| 1352 |
+
"single_word": false,
|
| 1353 |
+
"special": true
|
| 1354 |
+
},
|
| 1355 |
+
"128169": {
|
| 1356 |
+
"content": "<|reserved_special_token_164|>",
|
| 1357 |
+
"lstrip": false,
|
| 1358 |
+
"normalized": false,
|
| 1359 |
+
"rstrip": false,
|
| 1360 |
+
"single_word": false,
|
| 1361 |
+
"special": true
|
| 1362 |
+
},
|
| 1363 |
+
"128170": {
|
| 1364 |
+
"content": "<|reserved_special_token_165|>",
|
| 1365 |
+
"lstrip": false,
|
| 1366 |
+
"normalized": false,
|
| 1367 |
+
"rstrip": false,
|
| 1368 |
+
"single_word": false,
|
| 1369 |
+
"special": true
|
| 1370 |
+
},
|
| 1371 |
+
"128171": {
|
| 1372 |
+
"content": "<|reserved_special_token_166|>",
|
| 1373 |
+
"lstrip": false,
|
| 1374 |
+
"normalized": false,
|
| 1375 |
+
"rstrip": false,
|
| 1376 |
+
"single_word": false,
|
| 1377 |
+
"special": true
|
| 1378 |
+
},
|
| 1379 |
+
"128172": {
|
| 1380 |
+
"content": "<|reserved_special_token_167|>",
|
| 1381 |
+
"lstrip": false,
|
| 1382 |
+
"normalized": false,
|
| 1383 |
+
"rstrip": false,
|
| 1384 |
+
"single_word": false,
|
| 1385 |
+
"special": true
|
| 1386 |
+
},
|
| 1387 |
+
"128173": {
|
| 1388 |
+
"content": "<|reserved_special_token_168|>",
|
| 1389 |
+
"lstrip": false,
|
| 1390 |
+
"normalized": false,
|
| 1391 |
+
"rstrip": false,
|
| 1392 |
+
"single_word": false,
|
| 1393 |
+
"special": true
|
| 1394 |
+
},
|
| 1395 |
+
"128174": {
|
| 1396 |
+
"content": "<|reserved_special_token_169|>",
|
| 1397 |
+
"lstrip": false,
|
| 1398 |
+
"normalized": false,
|
| 1399 |
+
"rstrip": false,
|
| 1400 |
+
"single_word": false,
|
| 1401 |
+
"special": true
|
| 1402 |
+
},
|
| 1403 |
+
"128175": {
|
| 1404 |
+
"content": "<|reserved_special_token_170|>",
|
| 1405 |
+
"lstrip": false,
|
| 1406 |
+
"normalized": false,
|
| 1407 |
+
"rstrip": false,
|
| 1408 |
+
"single_word": false,
|
| 1409 |
+
"special": true
|
| 1410 |
+
},
|
| 1411 |
+
"128176": {
|
| 1412 |
+
"content": "<|reserved_special_token_171|>",
|
| 1413 |
+
"lstrip": false,
|
| 1414 |
+
"normalized": false,
|
| 1415 |
+
"rstrip": false,
|
| 1416 |
+
"single_word": false,
|
| 1417 |
+
"special": true
|
| 1418 |
+
},
|
| 1419 |
+
"128177": {
|
| 1420 |
+
"content": "<|reserved_special_token_172|>",
|
| 1421 |
+
"lstrip": false,
|
| 1422 |
+
"normalized": false,
|
| 1423 |
+
"rstrip": false,
|
| 1424 |
+
"single_word": false,
|
| 1425 |
+
"special": true
|
| 1426 |
+
},
|
| 1427 |
+
"128178": {
|
| 1428 |
+
"content": "<|reserved_special_token_173|>",
|
| 1429 |
+
"lstrip": false,
|
| 1430 |
+
"normalized": false,
|
| 1431 |
+
"rstrip": false,
|
| 1432 |
+
"single_word": false,
|
| 1433 |
+
"special": true
|
| 1434 |
+
},
|
| 1435 |
+
"128179": {
|
| 1436 |
+
"content": "<|reserved_special_token_174|>",
|
| 1437 |
+
"lstrip": false,
|
| 1438 |
+
"normalized": false,
|
| 1439 |
+
"rstrip": false,
|
| 1440 |
+
"single_word": false,
|
| 1441 |
+
"special": true
|
| 1442 |
+
},
|
| 1443 |
+
"128180": {
|
| 1444 |
+
"content": "<|reserved_special_token_175|>",
|
| 1445 |
+
"lstrip": false,
|
| 1446 |
+
"normalized": false,
|
| 1447 |
+
"rstrip": false,
|
| 1448 |
+
"single_word": false,
|
| 1449 |
+
"special": true
|
| 1450 |
+
},
|
| 1451 |
+
"128181": {
|
| 1452 |
+
"content": "<|reserved_special_token_176|>",
|
| 1453 |
+
"lstrip": false,
|
| 1454 |
+
"normalized": false,
|
| 1455 |
+
"rstrip": false,
|
| 1456 |
+
"single_word": false,
|
| 1457 |
+
"special": true
|
| 1458 |
+
},
|
| 1459 |
+
"128182": {
|
| 1460 |
+
"content": "<|reserved_special_token_177|>",
|
| 1461 |
+
"lstrip": false,
|
| 1462 |
+
"normalized": false,
|
| 1463 |
+
"rstrip": false,
|
| 1464 |
+
"single_word": false,
|
| 1465 |
+
"special": true
|
| 1466 |
+
},
|
| 1467 |
+
"128183": {
|
| 1468 |
+
"content": "<|reserved_special_token_178|>",
|
| 1469 |
+
"lstrip": false,
|
| 1470 |
+
"normalized": false,
|
| 1471 |
+
"rstrip": false,
|
| 1472 |
+
"single_word": false,
|
| 1473 |
+
"special": true
|
| 1474 |
+
},
|
| 1475 |
+
"128184": {
|
| 1476 |
+
"content": "<|reserved_special_token_179|>",
|
| 1477 |
+
"lstrip": false,
|
| 1478 |
+
"normalized": false,
|
| 1479 |
+
"rstrip": false,
|
| 1480 |
+
"single_word": false,
|
| 1481 |
+
"special": true
|
| 1482 |
+
},
|
| 1483 |
+
"128185": {
|
| 1484 |
+
"content": "<|reserved_special_token_180|>",
|
| 1485 |
+
"lstrip": false,
|
| 1486 |
+
"normalized": false,
|
| 1487 |
+
"rstrip": false,
|
| 1488 |
+
"single_word": false,
|
| 1489 |
+
"special": true
|
| 1490 |
+
},
|
| 1491 |
+
"128186": {
|
| 1492 |
+
"content": "<|reserved_special_token_181|>",
|
| 1493 |
+
"lstrip": false,
|
| 1494 |
+
"normalized": false,
|
| 1495 |
+
"rstrip": false,
|
| 1496 |
+
"single_word": false,
|
| 1497 |
+
"special": true
|
| 1498 |
+
},
|
| 1499 |
+
"128187": {
|
| 1500 |
+
"content": "<|reserved_special_token_182|>",
|
| 1501 |
+
"lstrip": false,
|
| 1502 |
+
"normalized": false,
|
| 1503 |
+
"rstrip": false,
|
| 1504 |
+
"single_word": false,
|
| 1505 |
+
"special": true
|
| 1506 |
+
},
|
| 1507 |
+
"128188": {
|
| 1508 |
+
"content": "<|reserved_special_token_183|>",
|
| 1509 |
+
"lstrip": false,
|
| 1510 |
+
"normalized": false,
|
| 1511 |
+
"rstrip": false,
|
| 1512 |
+
"single_word": false,
|
| 1513 |
+
"special": true
|
| 1514 |
+
},
|
| 1515 |
+
"128189": {
|
| 1516 |
+
"content": "<|reserved_special_token_184|>",
|
| 1517 |
+
"lstrip": false,
|
| 1518 |
+
"normalized": false,
|
| 1519 |
+
"rstrip": false,
|
| 1520 |
+
"single_word": false,
|
| 1521 |
+
"special": true
|
| 1522 |
+
},
|
| 1523 |
+
"128190": {
|
| 1524 |
+
"content": "<|reserved_special_token_185|>",
|
| 1525 |
+
"lstrip": false,
|
| 1526 |
+
"normalized": false,
|
| 1527 |
+
"rstrip": false,
|
| 1528 |
+
"single_word": false,
|
| 1529 |
+
"special": true
|
| 1530 |
+
},
|
| 1531 |
+
"128191": {
|
| 1532 |
+
"content": "<|reserved_special_token_186|>",
|
| 1533 |
+
"lstrip": false,
|
| 1534 |
+
"normalized": false,
|
| 1535 |
+
"rstrip": false,
|
| 1536 |
+
"single_word": false,
|
| 1537 |
+
"special": true
|
| 1538 |
+
},
|
| 1539 |
+
"128192": {
|
| 1540 |
+
"content": "<|reserved_special_token_187|>",
|
| 1541 |
+
"lstrip": false,
|
| 1542 |
+
"normalized": false,
|
| 1543 |
+
"rstrip": false,
|
| 1544 |
+
"single_word": false,
|
| 1545 |
+
"special": true
|
| 1546 |
+
},
|
| 1547 |
+
"128193": {
|
| 1548 |
+
"content": "<|reserved_special_token_188|>",
|
| 1549 |
+
"lstrip": false,
|
| 1550 |
+
"normalized": false,
|
| 1551 |
+
"rstrip": false,
|
| 1552 |
+
"single_word": false,
|
| 1553 |
+
"special": true
|
| 1554 |
+
},
|
| 1555 |
+
"128194": {
|
| 1556 |
+
"content": "<|reserved_special_token_189|>",
|
| 1557 |
+
"lstrip": false,
|
| 1558 |
+
"normalized": false,
|
| 1559 |
+
"rstrip": false,
|
| 1560 |
+
"single_word": false,
|
| 1561 |
+
"special": true
|
| 1562 |
+
},
|
| 1563 |
+
"128195": {
|
| 1564 |
+
"content": "<|reserved_special_token_190|>",
|
| 1565 |
+
"lstrip": false,
|
| 1566 |
+
"normalized": false,
|
| 1567 |
+
"rstrip": false,
|
| 1568 |
+
"single_word": false,
|
| 1569 |
+
"special": true
|
| 1570 |
+
},
|
| 1571 |
+
"128196": {
|
| 1572 |
+
"content": "<|reserved_special_token_191|>",
|
| 1573 |
+
"lstrip": false,
|
| 1574 |
+
"normalized": false,
|
| 1575 |
+
"rstrip": false,
|
| 1576 |
+
"single_word": false,
|
| 1577 |
+
"special": true
|
| 1578 |
+
},
|
| 1579 |
+
"128197": {
|
| 1580 |
+
"content": "<|reserved_special_token_192|>",
|
| 1581 |
+
"lstrip": false,
|
| 1582 |
+
"normalized": false,
|
| 1583 |
+
"rstrip": false,
|
| 1584 |
+
"single_word": false,
|
| 1585 |
+
"special": true
|
| 1586 |
+
},
|
| 1587 |
+
"128198": {
|
| 1588 |
+
"content": "<|reserved_special_token_193|>",
|
| 1589 |
+
"lstrip": false,
|
| 1590 |
+
"normalized": false,
|
| 1591 |
+
"rstrip": false,
|
| 1592 |
+
"single_word": false,
|
| 1593 |
+
"special": true
|
| 1594 |
+
},
|
| 1595 |
+
"128199": {
|
| 1596 |
+
"content": "<|reserved_special_token_194|>",
|
| 1597 |
+
"lstrip": false,
|
| 1598 |
+
"normalized": false,
|
| 1599 |
+
"rstrip": false,
|
| 1600 |
+
"single_word": false,
|
| 1601 |
+
"special": true
|
| 1602 |
+
},
|
| 1603 |
+
"128200": {
|
| 1604 |
+
"content": "<|reserved_special_token_195|>",
|
| 1605 |
+
"lstrip": false,
|
| 1606 |
+
"normalized": false,
|
| 1607 |
+
"rstrip": false,
|
| 1608 |
+
"single_word": false,
|
| 1609 |
+
"special": true
|
| 1610 |
+
},
|
| 1611 |
+
"128201": {
|
| 1612 |
+
"content": "<|reserved_special_token_196|>",
|
| 1613 |
+
"lstrip": false,
|
| 1614 |
+
"normalized": false,
|
| 1615 |
+
"rstrip": false,
|
| 1616 |
+
"single_word": false,
|
| 1617 |
+
"special": true
|
| 1618 |
+
},
|
| 1619 |
+
"128202": {
|
| 1620 |
+
"content": "<|reserved_special_token_197|>",
|
| 1621 |
+
"lstrip": false,
|
| 1622 |
+
"normalized": false,
|
| 1623 |
+
"rstrip": false,
|
| 1624 |
+
"single_word": false,
|
| 1625 |
+
"special": true
|
| 1626 |
+
},
|
| 1627 |
+
"128203": {
|
| 1628 |
+
"content": "<|reserved_special_token_198|>",
|
| 1629 |
+
"lstrip": false,
|
| 1630 |
+
"normalized": false,
|
| 1631 |
+
"rstrip": false,
|
| 1632 |
+
"single_word": false,
|
| 1633 |
+
"special": true
|
| 1634 |
+
},
|
| 1635 |
+
"128204": {
|
| 1636 |
+
"content": "<|reserved_special_token_199|>",
|
| 1637 |
+
"lstrip": false,
|
| 1638 |
+
"normalized": false,
|
| 1639 |
+
"rstrip": false,
|
| 1640 |
+
"single_word": false,
|
| 1641 |
+
"special": true
|
| 1642 |
+
},
|
| 1643 |
+
"128205": {
|
| 1644 |
+
"content": "<|reserved_special_token_200|>",
|
| 1645 |
+
"lstrip": false,
|
| 1646 |
+
"normalized": false,
|
| 1647 |
+
"rstrip": false,
|
| 1648 |
+
"single_word": false,
|
| 1649 |
+
"special": true
|
| 1650 |
+
},
|
| 1651 |
+
"128206": {
|
| 1652 |
+
"content": "<|reserved_special_token_201|>",
|
| 1653 |
+
"lstrip": false,
|
| 1654 |
+
"normalized": false,
|
| 1655 |
+
"rstrip": false,
|
| 1656 |
+
"single_word": false,
|
| 1657 |
+
"special": true
|
| 1658 |
+
},
|
| 1659 |
+
"128207": {
|
| 1660 |
+
"content": "<|reserved_special_token_202|>",
|
| 1661 |
+
"lstrip": false,
|
| 1662 |
+
"normalized": false,
|
| 1663 |
+
"rstrip": false,
|
| 1664 |
+
"single_word": false,
|
| 1665 |
+
"special": true
|
| 1666 |
+
},
|
| 1667 |
+
"128208": {
|
| 1668 |
+
"content": "<|reserved_special_token_203|>",
|
| 1669 |
+
"lstrip": false,
|
| 1670 |
+
"normalized": false,
|
| 1671 |
+
"rstrip": false,
|
| 1672 |
+
"single_word": false,
|
| 1673 |
+
"special": true
|
| 1674 |
+
},
|
| 1675 |
+
"128209": {
|
| 1676 |
+
"content": "<|reserved_special_token_204|>",
|
| 1677 |
+
"lstrip": false,
|
| 1678 |
+
"normalized": false,
|
| 1679 |
+
"rstrip": false,
|
| 1680 |
+
"single_word": false,
|
| 1681 |
+
"special": true
|
| 1682 |
+
},
|
| 1683 |
+
"128210": {
|
| 1684 |
+
"content": "<|reserved_special_token_205|>",
|
| 1685 |
+
"lstrip": false,
|
| 1686 |
+
"normalized": false,
|
| 1687 |
+
"rstrip": false,
|
| 1688 |
+
"single_word": false,
|
| 1689 |
+
"special": true
|
| 1690 |
+
},
|
| 1691 |
+
"128211": {
|
| 1692 |
+
"content": "<|reserved_special_token_206|>",
|
| 1693 |
+
"lstrip": false,
|
| 1694 |
+
"normalized": false,
|
| 1695 |
+
"rstrip": false,
|
| 1696 |
+
"single_word": false,
|
| 1697 |
+
"special": true
|
| 1698 |
+
},
|
| 1699 |
+
"128212": {
|
| 1700 |
+
"content": "<|reserved_special_token_207|>",
|
| 1701 |
+
"lstrip": false,
|
| 1702 |
+
"normalized": false,
|
| 1703 |
+
"rstrip": false,
|
| 1704 |
+
"single_word": false,
|
| 1705 |
+
"special": true
|
| 1706 |
+
},
|
| 1707 |
+
"128213": {
|
| 1708 |
+
"content": "<|reserved_special_token_208|>",
|
| 1709 |
+
"lstrip": false,
|
| 1710 |
+
"normalized": false,
|
| 1711 |
+
"rstrip": false,
|
| 1712 |
+
"single_word": false,
|
| 1713 |
+
"special": true
|
| 1714 |
+
},
|
| 1715 |
+
"128214": {
|
| 1716 |
+
"content": "<|reserved_special_token_209|>",
|
| 1717 |
+
"lstrip": false,
|
| 1718 |
+
"normalized": false,
|
| 1719 |
+
"rstrip": false,
|
| 1720 |
+
"single_word": false,
|
| 1721 |
+
"special": true
|
| 1722 |
+
},
|
| 1723 |
+
"128215": {
|
| 1724 |
+
"content": "<|reserved_special_token_210|>",
|
| 1725 |
+
"lstrip": false,
|
| 1726 |
+
"normalized": false,
|
| 1727 |
+
"rstrip": false,
|
| 1728 |
+
"single_word": false,
|
| 1729 |
+
"special": true
|
| 1730 |
+
},
|
| 1731 |
+
"128216": {
|
| 1732 |
+
"content": "<|reserved_special_token_211|>",
|
| 1733 |
+
"lstrip": false,
|
| 1734 |
+
"normalized": false,
|
| 1735 |
+
"rstrip": false,
|
| 1736 |
+
"single_word": false,
|
| 1737 |
+
"special": true
|
| 1738 |
+
},
|
| 1739 |
+
"128217": {
|
| 1740 |
+
"content": "<|reserved_special_token_212|>",
|
| 1741 |
+
"lstrip": false,
|
| 1742 |
+
"normalized": false,
|
| 1743 |
+
"rstrip": false,
|
| 1744 |
+
"single_word": false,
|
| 1745 |
+
"special": true
|
| 1746 |
+
},
|
| 1747 |
+
"128218": {
|
| 1748 |
+
"content": "<|reserved_special_token_213|>",
|
| 1749 |
+
"lstrip": false,
|
| 1750 |
+
"normalized": false,
|
| 1751 |
+
"rstrip": false,
|
| 1752 |
+
"single_word": false,
|
| 1753 |
+
"special": true
|
| 1754 |
+
},
|
| 1755 |
+
"128219": {
|
| 1756 |
+
"content": "<|reserved_special_token_214|>",
|
| 1757 |
+
"lstrip": false,
|
| 1758 |
+
"normalized": false,
|
| 1759 |
+
"rstrip": false,
|
| 1760 |
+
"single_word": false,
|
| 1761 |
+
"special": true
|
| 1762 |
+
},
|
| 1763 |
+
"128220": {
|
| 1764 |
+
"content": "<|reserved_special_token_215|>",
|
| 1765 |
+
"lstrip": false,
|
| 1766 |
+
"normalized": false,
|
| 1767 |
+
"rstrip": false,
|
| 1768 |
+
"single_word": false,
|
| 1769 |
+
"special": true
|
| 1770 |
+
},
|
| 1771 |
+
"128221": {
|
| 1772 |
+
"content": "<|reserved_special_token_216|>",
|
| 1773 |
+
"lstrip": false,
|
| 1774 |
+
"normalized": false,
|
| 1775 |
+
"rstrip": false,
|
| 1776 |
+
"single_word": false,
|
| 1777 |
+
"special": true
|
| 1778 |
+
},
|
| 1779 |
+
"128222": {
|
| 1780 |
+
"content": "<|reserved_special_token_217|>",
|
| 1781 |
+
"lstrip": false,
|
| 1782 |
+
"normalized": false,
|
| 1783 |
+
"rstrip": false,
|
| 1784 |
+
"single_word": false,
|
| 1785 |
+
"special": true
|
| 1786 |
+
},
|
| 1787 |
+
"128223": {
|
| 1788 |
+
"content": "<|reserved_special_token_218|>",
|
| 1789 |
+
"lstrip": false,
|
| 1790 |
+
"normalized": false,
|
| 1791 |
+
"rstrip": false,
|
| 1792 |
+
"single_word": false,
|
| 1793 |
+
"special": true
|
| 1794 |
+
},
|
| 1795 |
+
"128224": {
|
| 1796 |
+
"content": "<|reserved_special_token_219|>",
|
| 1797 |
+
"lstrip": false,
|
| 1798 |
+
"normalized": false,
|
| 1799 |
+
"rstrip": false,
|
| 1800 |
+
"single_word": false,
|
| 1801 |
+
"special": true
|
| 1802 |
+
},
|
| 1803 |
+
"128225": {
|
| 1804 |
+
"content": "<|reserved_special_token_220|>",
|
| 1805 |
+
"lstrip": false,
|
| 1806 |
+
"normalized": false,
|
| 1807 |
+
"rstrip": false,
|
| 1808 |
+
"single_word": false,
|
| 1809 |
+
"special": true
|
| 1810 |
+
},
|
| 1811 |
+
"128226": {
|
| 1812 |
+
"content": "<|reserved_special_token_221|>",
|
| 1813 |
+
"lstrip": false,
|
| 1814 |
+
"normalized": false,
|
| 1815 |
+
"rstrip": false,
|
| 1816 |
+
"single_word": false,
|
| 1817 |
+
"special": true
|
| 1818 |
+
},
|
| 1819 |
+
"128227": {
|
| 1820 |
+
"content": "<|reserved_special_token_222|>",
|
| 1821 |
+
"lstrip": false,
|
| 1822 |
+
"normalized": false,
|
| 1823 |
+
"rstrip": false,
|
| 1824 |
+
"single_word": false,
|
| 1825 |
+
"special": true
|
| 1826 |
+
},
|
| 1827 |
+
"128228": {
|
| 1828 |
+
"content": "<|reserved_special_token_223|>",
|
| 1829 |
+
"lstrip": false,
|
| 1830 |
+
"normalized": false,
|
| 1831 |
+
"rstrip": false,
|
| 1832 |
+
"single_word": false,
|
| 1833 |
+
"special": true
|
| 1834 |
+
},
|
| 1835 |
+
"128229": {
|
| 1836 |
+
"content": "<|reserved_special_token_224|>",
|
| 1837 |
+
"lstrip": false,
|
| 1838 |
+
"normalized": false,
|
| 1839 |
+
"rstrip": false,
|
| 1840 |
+
"single_word": false,
|
| 1841 |
+
"special": true
|
| 1842 |
+
},
|
| 1843 |
+
"128230": {
|
| 1844 |
+
"content": "<|reserved_special_token_225|>",
|
| 1845 |
+
"lstrip": false,
|
| 1846 |
+
"normalized": false,
|
| 1847 |
+
"rstrip": false,
|
| 1848 |
+
"single_word": false,
|
| 1849 |
+
"special": true
|
| 1850 |
+
},
|
| 1851 |
+
"128231": {
|
| 1852 |
+
"content": "<|reserved_special_token_226|>",
|
| 1853 |
+
"lstrip": false,
|
| 1854 |
+
"normalized": false,
|
| 1855 |
+
"rstrip": false,
|
| 1856 |
+
"single_word": false,
|
| 1857 |
+
"special": true
|
| 1858 |
+
},
|
| 1859 |
+
"128232": {
|
| 1860 |
+
"content": "<|reserved_special_token_227|>",
|
| 1861 |
+
"lstrip": false,
|
| 1862 |
+
"normalized": false,
|
| 1863 |
+
"rstrip": false,
|
| 1864 |
+
"single_word": false,
|
| 1865 |
+
"special": true
|
| 1866 |
+
},
|
| 1867 |
+
"128233": {
|
| 1868 |
+
"content": "<|reserved_special_token_228|>",
|
| 1869 |
+
"lstrip": false,
|
| 1870 |
+
"normalized": false,
|
| 1871 |
+
"rstrip": false,
|
| 1872 |
+
"single_word": false,
|
| 1873 |
+
"special": true
|
| 1874 |
+
},
|
| 1875 |
+
"128234": {
|
| 1876 |
+
"content": "<|reserved_special_token_229|>",
|
| 1877 |
+
"lstrip": false,
|
| 1878 |
+
"normalized": false,
|
| 1879 |
+
"rstrip": false,
|
| 1880 |
+
"single_word": false,
|
| 1881 |
+
"special": true
|
| 1882 |
+
},
|
| 1883 |
+
"128235": {
|
| 1884 |
+
"content": "<|reserved_special_token_230|>",
|
| 1885 |
+
"lstrip": false,
|
| 1886 |
+
"normalized": false,
|
| 1887 |
+
"rstrip": false,
|
| 1888 |
+
"single_word": false,
|
| 1889 |
+
"special": true
|
| 1890 |
+
},
|
| 1891 |
+
"128236": {
|
| 1892 |
+
"content": "<|reserved_special_token_231|>",
|
| 1893 |
+
"lstrip": false,
|
| 1894 |
+
"normalized": false,
|
| 1895 |
+
"rstrip": false,
|
| 1896 |
+
"single_word": false,
|
| 1897 |
+
"special": true
|
| 1898 |
+
},
|
| 1899 |
+
"128237": {
|
| 1900 |
+
"content": "<|reserved_special_token_232|>",
|
| 1901 |
+
"lstrip": false,
|
| 1902 |
+
"normalized": false,
|
| 1903 |
+
"rstrip": false,
|
| 1904 |
+
"single_word": false,
|
| 1905 |
+
"special": true
|
| 1906 |
+
},
|
| 1907 |
+
"128238": {
|
| 1908 |
+
"content": "<|reserved_special_token_233|>",
|
| 1909 |
+
"lstrip": false,
|
| 1910 |
+
"normalized": false,
|
| 1911 |
+
"rstrip": false,
|
| 1912 |
+
"single_word": false,
|
| 1913 |
+
"special": true
|
| 1914 |
+
},
|
| 1915 |
+
"128239": {
|
| 1916 |
+
"content": "<|reserved_special_token_234|>",
|
| 1917 |
+
"lstrip": false,
|
| 1918 |
+
"normalized": false,
|
| 1919 |
+
"rstrip": false,
|
| 1920 |
+
"single_word": false,
|
| 1921 |
+
"special": true
|
| 1922 |
+
},
|
| 1923 |
+
"128240": {
|
| 1924 |
+
"content": "<|reserved_special_token_235|>",
|
| 1925 |
+
"lstrip": false,
|
| 1926 |
+
"normalized": false,
|
| 1927 |
+
"rstrip": false,
|
| 1928 |
+
"single_word": false,
|
| 1929 |
+
"special": true
|
| 1930 |
+
},
|
| 1931 |
+
"128241": {
|
| 1932 |
+
"content": "<|reserved_special_token_236|>",
|
| 1933 |
+
"lstrip": false,
|
| 1934 |
+
"normalized": false,
|
| 1935 |
+
"rstrip": false,
|
| 1936 |
+
"single_word": false,
|
| 1937 |
+
"special": true
|
| 1938 |
+
},
|
| 1939 |
+
"128242": {
|
| 1940 |
+
"content": "<|reserved_special_token_237|>",
|
| 1941 |
+
"lstrip": false,
|
| 1942 |
+
"normalized": false,
|
| 1943 |
+
"rstrip": false,
|
| 1944 |
+
"single_word": false,
|
| 1945 |
+
"special": true
|
| 1946 |
+
},
|
| 1947 |
+
"128243": {
|
| 1948 |
+
"content": "<|reserved_special_token_238|>",
|
| 1949 |
+
"lstrip": false,
|
| 1950 |
+
"normalized": false,
|
| 1951 |
+
"rstrip": false,
|
| 1952 |
+
"single_word": false,
|
| 1953 |
+
"special": true
|
| 1954 |
+
},
|
| 1955 |
+
"128244": {
|
| 1956 |
+
"content": "<|reserved_special_token_239|>",
|
| 1957 |
+
"lstrip": false,
|
| 1958 |
+
"normalized": false,
|
| 1959 |
+
"rstrip": false,
|
| 1960 |
+
"single_word": false,
|
| 1961 |
+
"special": true
|
| 1962 |
+
},
|
| 1963 |
+
"128245": {
|
| 1964 |
+
"content": "<|reserved_special_token_240|>",
|
| 1965 |
+
"lstrip": false,
|
| 1966 |
+
"normalized": false,
|
| 1967 |
+
"rstrip": false,
|
| 1968 |
+
"single_word": false,
|
| 1969 |
+
"special": true
|
| 1970 |
+
},
|
| 1971 |
+
"128246": {
|
| 1972 |
+
"content": "<|reserved_special_token_241|>",
|
| 1973 |
+
"lstrip": false,
|
| 1974 |
+
"normalized": false,
|
| 1975 |
+
"rstrip": false,
|
| 1976 |
+
"single_word": false,
|
| 1977 |
+
"special": true
|
| 1978 |
+
},
|
| 1979 |
+
"128247": {
|
| 1980 |
+
"content": "<|reserved_special_token_242|>",
|
| 1981 |
+
"lstrip": false,
|
| 1982 |
+
"normalized": false,
|
| 1983 |
+
"rstrip": false,
|
| 1984 |
+
"single_word": false,
|
| 1985 |
+
"special": true
|
| 1986 |
+
},
|
| 1987 |
+
"128248": {
|
| 1988 |
+
"content": "<|reserved_special_token_243|>",
|
| 1989 |
+
"lstrip": false,
|
| 1990 |
+
"normalized": false,
|
| 1991 |
+
"rstrip": false,
|
| 1992 |
+
"single_word": false,
|
| 1993 |
+
"special": true
|
| 1994 |
+
},
|
| 1995 |
+
"128249": {
|
| 1996 |
+
"content": "<|reserved_special_token_244|>",
|
| 1997 |
+
"lstrip": false,
|
| 1998 |
+
"normalized": false,
|
| 1999 |
+
"rstrip": false,
|
| 2000 |
+
"single_word": false,
|
| 2001 |
+
"special": true
|
| 2002 |
+
},
|
| 2003 |
+
"128250": {
|
| 2004 |
+
"content": "<|reserved_special_token_245|>",
|
| 2005 |
+
"lstrip": false,
|
| 2006 |
+
"normalized": false,
|
| 2007 |
+
"rstrip": false,
|
| 2008 |
+
"single_word": false,
|
| 2009 |
+
"special": true
|
| 2010 |
+
},
|
| 2011 |
+
"128251": {
|
| 2012 |
+
"content": "<|reserved_special_token_246|>",
|
| 2013 |
+
"lstrip": false,
|
| 2014 |
+
"normalized": false,
|
| 2015 |
+
"rstrip": false,
|
| 2016 |
+
"single_word": false,
|
| 2017 |
+
"special": true
|
| 2018 |
+
},
|
| 2019 |
+
"128252": {
|
| 2020 |
+
"content": "<|reserved_special_token_247|>",
|
| 2021 |
+
"lstrip": false,
|
| 2022 |
+
"normalized": false,
|
| 2023 |
+
"rstrip": false,
|
| 2024 |
+
"single_word": false,
|
| 2025 |
+
"special": true
|
| 2026 |
+
},
|
| 2027 |
+
"128253": {
|
| 2028 |
+
"content": "<|reserved_special_token_248|>",
|
| 2029 |
+
"lstrip": false,
|
| 2030 |
+
"normalized": false,
|
| 2031 |
+
"rstrip": false,
|
| 2032 |
+
"single_word": false,
|
| 2033 |
+
"special": true
|
| 2034 |
+
},
|
| 2035 |
+
"128254": {
|
| 2036 |
+
"content": "<|reserved_special_token_249|>",
|
| 2037 |
+
"lstrip": false,
|
| 2038 |
+
"normalized": false,
|
| 2039 |
+
"rstrip": false,
|
| 2040 |
+
"single_word": false,
|
| 2041 |
+
"special": true
|
| 2042 |
+
},
|
| 2043 |
+
"128255": {
|
| 2044 |
+
"content": "<|reserved_special_token_250|>",
|
| 2045 |
+
"lstrip": false,
|
| 2046 |
+
"normalized": false,
|
| 2047 |
+
"rstrip": false,
|
| 2048 |
+
"single_word": false,
|
| 2049 |
+
"special": true
|
| 2050 |
+
}
|
| 2051 |
+
},
|
| 2052 |
+
"bos_token": "<|begin_of_text|>",
|
| 2053 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% else %}{{ eos_token }}{% endif %}",
|
| 2054 |
+
"clean_up_tokenization_spaces": true,
|
| 2055 |
+
"eos_token": "<|end_of_text|>",
|
| 2056 |
+
"model_input_names": [
|
| 2057 |
+
"input_ids",
|
| 2058 |
+
"token_type_ids",
|
| 2059 |
+
"attention_mask",
|
| 2060 |
+
"images"
|
| 2061 |
+
],
|
| 2062 |
+
"model_max_length": 2048,
|
| 2063 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 2064 |
+
}
|
util.py
ADDED
|
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@triton.jit
|
| 12 |
+
def rotary_kernel(
|
| 13 |
+
OUT,
|
| 14 |
+
X,
|
| 15 |
+
COS,
|
| 16 |
+
SIN,
|
| 17 |
+
CU_SEQLENS,
|
| 18 |
+
SEQLEN_OFFSETS,
|
| 19 |
+
seqlen,
|
| 20 |
+
nheads,
|
| 21 |
+
rotary_dim,
|
| 22 |
+
seqlen_ro,
|
| 23 |
+
CACHE_KEY_SEQLEN,
|
| 24 |
+
# strides
|
| 25 |
+
stride_out_batch,
|
| 26 |
+
stride_out_nheads,
|
| 27 |
+
stride_out_seqlen,
|
| 28 |
+
stride_out_headdim,
|
| 29 |
+
stride_x_batch,
|
| 30 |
+
stride_x_nheads,
|
| 31 |
+
stride_x_seqlen,
|
| 32 |
+
stride_x_headdim,
|
| 33 |
+
BLOCK_K: tl.constexpr,
|
| 34 |
+
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
|
| 35 |
+
IS_VARLEN: tl.constexpr,
|
| 36 |
+
INTERLEAVED: tl.constexpr,
|
| 37 |
+
CONJUGATE: tl.constexpr,
|
| 38 |
+
BLOCK_M: tl.constexpr,
|
| 39 |
+
):
|
| 40 |
+
pid_m = tl.program_id(axis=0)
|
| 41 |
+
pid_batch = tl.program_id(axis=1)
|
| 42 |
+
pid_head = tl.program_id(axis=2)
|
| 43 |
+
rotary_dim_half = rotary_dim // 2
|
| 44 |
+
|
| 45 |
+
if not IS_VARLEN:
|
| 46 |
+
X = X + pid_batch * stride_x_batch + pid_head * stride_x_nheads
|
| 47 |
+
OUT = OUT + pid_batch * stride_out_batch + pid_head * stride_out_nheads
|
| 48 |
+
COS = COS + pid_batch * seqlen_ro * rotary_dim_half
|
| 49 |
+
SIN = SIN + pid_batch * seqlen_ro * rotary_dim_half
|
| 50 |
+
else:
|
| 51 |
+
start_idx = tl.load(CU_SEQLENS + pid_batch)
|
| 52 |
+
seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
|
| 53 |
+
X = X + start_idx * stride_x_seqlen + pid_head * stride_x_nheads
|
| 54 |
+
OUT = OUT + start_idx * stride_out_seqlen + pid_head * stride_out_nheads
|
| 55 |
+
|
| 56 |
+
if pid_m * BLOCK_M >= seqlen:
|
| 57 |
+
return
|
| 58 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 59 |
+
if not IS_SEQLEN_OFFSETS_TENSOR:
|
| 60 |
+
rm_cs = rm + SEQLEN_OFFSETS
|
| 61 |
+
else:
|
| 62 |
+
rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
|
| 63 |
+
rk = tl.arange(0, BLOCK_K)
|
| 64 |
+
rk_half = tl.arange(0, BLOCK_K // 2)
|
| 65 |
+
|
| 66 |
+
if not INTERLEAVED:
|
| 67 |
+
# Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
|
| 68 |
+
X = X + (rm[:, None] * stride_x_seqlen + rk_half[None, :] * stride_x_headdim)
|
| 69 |
+
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
|
| 70 |
+
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
|
| 71 |
+
cos = tl.load(
|
| 72 |
+
COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=1.0
|
| 73 |
+
)
|
| 74 |
+
sin = tl.load(
|
| 75 |
+
SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=0.0
|
| 76 |
+
)
|
| 77 |
+
x0 = tl.load(
|
| 78 |
+
X, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), other=0.0
|
| 79 |
+
)
|
| 80 |
+
x1 = tl.load(
|
| 81 |
+
X + rotary_dim_half * stride_x_headdim,
|
| 82 |
+
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
|
| 83 |
+
other=0.0,
|
| 84 |
+
)
|
| 85 |
+
if CONJUGATE:
|
| 86 |
+
sin = -sin
|
| 87 |
+
o0 = x0 * cos - x1 * sin
|
| 88 |
+
o1 = x0 * sin + x1 * cos
|
| 89 |
+
# write back result
|
| 90 |
+
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk_half[None, :] * stride_out_headdim)
|
| 91 |
+
tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half))
|
| 92 |
+
tl.store(
|
| 93 |
+
OUT + rotary_dim_half * stride_out_headdim,
|
| 94 |
+
o1,
|
| 95 |
+
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
|
| 96 |
+
)
|
| 97 |
+
else:
|
| 98 |
+
# We don't want to load X[0, 2, 4, ...] and X[1, 3, 5, ...] separately since both are slow.
|
| 99 |
+
# Instead, we load x0 = X[0, 1, 2, 3, ...] and x1 = X[1, 0, 3, 2, ...].
|
| 100 |
+
# Loading x0 will be fast but x1 will be slow.
|
| 101 |
+
# Then we load cos = COS[0, 0, 1, 1, ...] and sin = SIN[0, 0, 1, 1, ...].
|
| 102 |
+
# Then we do the calculation and use tl.where to pick put the right outputs for the even
|
| 103 |
+
# and for the odd indices.
|
| 104 |
+
rk_swap = rk + ((rk + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ...
|
| 105 |
+
rk_repeat = tl.arange(0, BLOCK_K) // 2
|
| 106 |
+
X0 = X + (rm[:, None] * stride_x_seqlen + rk[None, :] * stride_x_headdim)
|
| 107 |
+
X1 = X + (rm[:, None] * stride_x_seqlen + rk_swap[None, :] * stride_x_headdim)
|
| 108 |
+
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
|
| 109 |
+
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
|
| 110 |
+
cos = tl.load(
|
| 111 |
+
COS,
|
| 112 |
+
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
|
| 113 |
+
other=1.0,
|
| 114 |
+
).to(tl.float32)
|
| 115 |
+
sin = tl.load(
|
| 116 |
+
SIN,
|
| 117 |
+
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
|
| 118 |
+
other=0.0,
|
| 119 |
+
).to(tl.float32)
|
| 120 |
+
x0 = tl.load(X0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim), other=0.0).to(
|
| 121 |
+
tl.float32
|
| 122 |
+
)
|
| 123 |
+
x1 = tl.load(
|
| 124 |
+
X1, mask=(rm[:, None] < seqlen) & (rk_swap[None, :] < rotary_dim), other=0.0
|
| 125 |
+
).to(tl.float32)
|
| 126 |
+
if CONJUGATE:
|
| 127 |
+
sin = -sin
|
| 128 |
+
x0_cos = x0 * cos
|
| 129 |
+
x1_sin = x1 * sin
|
| 130 |
+
out = tl.where(rk[None, :] % 2 == 0, x0_cos - x1_sin, x0_cos + x1_sin)
|
| 131 |
+
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk[None, :] * stride_out_headdim)
|
| 132 |
+
tl.store(OUT, out, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim))
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def apply_rotary(
|
| 136 |
+
x: torch.Tensor,
|
| 137 |
+
cos: torch.Tensor,
|
| 138 |
+
sin: torch.Tensor,
|
| 139 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 140 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 141 |
+
max_seqlen: Optional[int] = None,
|
| 142 |
+
interleaved=False,
|
| 143 |
+
inplace=False,
|
| 144 |
+
conjugate=False,
|
| 145 |
+
) -> torch.Tensor:
|
| 146 |
+
"""
|
| 147 |
+
Arguments:
|
| 148 |
+
x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
|
| 149 |
+
else (total_seqlen, nheads, headdim).
|
| 150 |
+
cos: (seqlen_ro, rotary_dim / 2)
|
| 151 |
+
sin: (seqlen_ro, rotary_dim / 2)
|
| 152 |
+
seqlen_offsets: integer or integer tensor of size (batch,)
|
| 153 |
+
cu_seqlens: (batch + 1,) or None
|
| 154 |
+
max_seqlen: int
|
| 155 |
+
Returns:
|
| 156 |
+
y: (batch, seqlen, nheads, headdim)
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
batch, nheads, seqlen, headdim = x.shape
|
| 160 |
+
|
| 161 |
+
batch_ro, seqlen_ro, rotary_dim = cos.shape
|
| 162 |
+
|
| 163 |
+
assert batch == batch_ro
|
| 164 |
+
assert sin.shape == cos.shape
|
| 165 |
+
rotary_dim *= 2
|
| 166 |
+
assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
|
| 167 |
+
assert headdim <= 256, "Only support headdim <= 256"
|
| 168 |
+
|
| 169 |
+
assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"
|
| 170 |
+
|
| 171 |
+
assert (
|
| 172 |
+
cos.dtype == sin.dtype
|
| 173 |
+
), f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
|
| 174 |
+
assert (
|
| 175 |
+
x.dtype == cos.dtype
|
| 176 |
+
), f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"
|
| 177 |
+
|
| 178 |
+
cos, sin = cos.contiguous(), sin.contiguous()
|
| 179 |
+
if isinstance(seqlen_offsets, torch.Tensor):
|
| 180 |
+
assert seqlen_offsets.shape == (batch,)
|
| 181 |
+
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
|
| 182 |
+
seqlen_offsets = seqlen_offsets.contiguous()
|
| 183 |
+
else:
|
| 184 |
+
assert seqlen_offsets + seqlen <= seqlen_ro
|
| 185 |
+
|
| 186 |
+
output = torch.empty_like(x) if not inplace else x
|
| 187 |
+
if rotary_dim < headdim and not inplace:
|
| 188 |
+
output[..., rotary_dim:].copy_(x[..., rotary_dim:])
|
| 189 |
+
|
| 190 |
+
BLOCK_K = (
|
| 191 |
+
32
|
| 192 |
+
if rotary_dim <= 32
|
| 193 |
+
else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256))
|
| 194 |
+
)
|
| 195 |
+
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads) # noqa
|
| 196 |
+
BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4)
|
| 197 |
+
|
| 198 |
+
# Need this, otherwise Triton tries to launch from cuda:0 and we get
|
| 199 |
+
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
|
| 200 |
+
with torch.cuda.device(x.device.index):
|
| 201 |
+
rotary_kernel[grid](
|
| 202 |
+
output, # data ptrs
|
| 203 |
+
x,
|
| 204 |
+
cos,
|
| 205 |
+
sin,
|
| 206 |
+
cu_seqlens,
|
| 207 |
+
seqlen_offsets,
|
| 208 |
+
seqlen, # shapes
|
| 209 |
+
nheads,
|
| 210 |
+
rotary_dim,
|
| 211 |
+
seqlen_ro,
|
| 212 |
+
seqlen // 128, # key for triton cache (limit number of compilations)
|
| 213 |
+
output.stride(0), # batch_strides
|
| 214 |
+
output.stride(-3), # nheads_stride
|
| 215 |
+
output.stride(-2), # seqlen_stride
|
| 216 |
+
output.stride(-1), # headdim_stride
|
| 217 |
+
x.stride(0), # batch_strides
|
| 218 |
+
x.stride(-3), # nheads stride
|
| 219 |
+
x.stride(-2), # seqlen stride
|
| 220 |
+
x.stride(-1), # headdim stride
|
| 221 |
+
BLOCK_K,
|
| 222 |
+
isinstance(seqlen_offsets, torch.Tensor),
|
| 223 |
+
False,
|
| 224 |
+
interleaved,
|
| 225 |
+
conjugate,
|
| 226 |
+
BLOCK_M,
|
| 227 |
+
)
|
| 228 |
+
return output
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class ApplyRotaryEmb(torch.autograd.Function):
|
| 232 |
+
@staticmethod
|
| 233 |
+
def forward(
|
| 234 |
+
ctx,
|
| 235 |
+
x,
|
| 236 |
+
cos,
|
| 237 |
+
sin,
|
| 238 |
+
interleaved=False,
|
| 239 |
+
inplace=False,
|
| 240 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 241 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 242 |
+
max_seqlen: Optional[int] = None,
|
| 243 |
+
):
|
| 244 |
+
out = apply_rotary(
|
| 245 |
+
x,
|
| 246 |
+
cos,
|
| 247 |
+
sin,
|
| 248 |
+
seqlen_offsets=seqlen_offsets,
|
| 249 |
+
cu_seqlens=cu_seqlens,
|
| 250 |
+
max_seqlen=max_seqlen,
|
| 251 |
+
interleaved=interleaved,
|
| 252 |
+
inplace=inplace,
|
| 253 |
+
)
|
| 254 |
+
if isinstance(seqlen_offsets, int):
|
| 255 |
+
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
| 256 |
+
ctx.seqlen_offsets = seqlen_offsets
|
| 257 |
+
else:
|
| 258 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
| 259 |
+
ctx.seqlen_offsets = None
|
| 260 |
+
ctx.interleaved = interleaved
|
| 261 |
+
ctx.inplace = inplace
|
| 262 |
+
ctx.max_seqlen = max_seqlen
|
| 263 |
+
return out if not inplace else x
|
| 264 |
+
|
| 265 |
+
@staticmethod
|
| 266 |
+
def backward(ctx, do):
|
| 267 |
+
seqlen_offsets = ctx.seqlen_offsets
|
| 268 |
+
if seqlen_offsets is None:
|
| 269 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
| 270 |
+
else:
|
| 271 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
| 272 |
+
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
|
| 273 |
+
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
| 274 |
+
if not ctx.interleaved and not ctx.inplace:
|
| 275 |
+
do = do.clone()
|
| 276 |
+
dx = apply_rotary(
|
| 277 |
+
do,
|
| 278 |
+
cos,
|
| 279 |
+
sin,
|
| 280 |
+
seqlen_offsets=seqlen_offsets,
|
| 281 |
+
cu_seqlens=cu_seqlens,
|
| 282 |
+
max_seqlen=ctx.max_seqlen,
|
| 283 |
+
interleaved=ctx.interleaved,
|
| 284 |
+
inplace=ctx.inplace,
|
| 285 |
+
conjugate=True,
|
| 286 |
+
)
|
| 287 |
+
return dx, None, None, None, None, None, None, None
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def apply_rotary_emb(
|
| 291 |
+
x,
|
| 292 |
+
cos,
|
| 293 |
+
sin,
|
| 294 |
+
interleaved=False,
|
| 295 |
+
inplace=False,
|
| 296 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 297 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 298 |
+
max_seqlen: Optional[int] = None,
|
| 299 |
+
):
|
| 300 |
+
"""
|
| 301 |
+
Arguments:
|
| 302 |
+
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
| 303 |
+
else (total_seqlen, nheads, headdim)
|
| 304 |
+
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
| 305 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 306 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
| 307 |
+
inplace: if True, apply rotary embedding in-place.
|
| 308 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
| 309 |
+
Most commonly used in inference when we have KV cache.
|
| 310 |
+
cu_seqlens: (batch + 1,) or None
|
| 311 |
+
max_seqlen: int
|
| 312 |
+
Return:
|
| 313 |
+
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
| 314 |
+
else (total_seqlen, nheads, headdim)
|
| 315 |
+
rotary_dim must be <= headdim
|
| 316 |
+
Apply rotary embedding to the first rotary_dim of x.
|
| 317 |
+
"""
|
| 318 |
+
return ApplyRotaryEmb.apply(
|
| 319 |
+
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# For backward compatibility
|
| 324 |
+
apply_rotary_emb_func = apply_rotary_emb
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
class FastRotaryEmbedding(torch.nn.Module):
|
| 328 |
+
"""
|
| 329 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
| 330 |
+
A crucial insight from the method is that the query and keys are
|
| 331 |
+
transformed by rotation matrices which depend on the relative positions.
|
| 332 |
+
|
| 333 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
| 334 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
| 335 |
+
|
| 336 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
| 337 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
| 338 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
| 339 |
+
|
| 340 |
+
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
| 341 |
+
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
| 342 |
+
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
| 343 |
+
"""
|
| 344 |
+
|
| 345 |
+
def __init__(
|
| 346 |
+
self,
|
| 347 |
+
dim: int,
|
| 348 |
+
base=10000,
|
| 349 |
+
interleaved=False,
|
| 350 |
+
scale_base=None,
|
| 351 |
+
pos_idx_in_fp32=True,
|
| 352 |
+
device=None,
|
| 353 |
+
):
|
| 354 |
+
"""
|
| 355 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 356 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
| 357 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
| 358 |
+
otherwise they might be in lower precision.
|
| 359 |
+
This option was added because previously (before 2023-07-02), when we construct
|
| 360 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
| 361 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
| 362 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
| 363 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
| 364 |
+
embeddings for some positions will coincide.
|
| 365 |
+
To maintain compatibility with models previously trained in pure bf16,
|
| 366 |
+
we add this option.
|
| 367 |
+
"""
|
| 368 |
+
super().__init__()
|
| 369 |
+
self.dim = dim
|
| 370 |
+
self.base = base
|
| 371 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 372 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
| 373 |
+
inv_freq = self._compute_inv_freq(device)
|
| 374 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 375 |
+
self.interleaved = interleaved
|
| 376 |
+
self.scale_base = scale_base
|
| 377 |
+
scale = (
|
| 378 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
| 379 |
+
if scale_base is not None
|
| 380 |
+
else None
|
| 381 |
+
)
|
| 382 |
+
self.register_buffer("scale", scale, persistent=False)
|
| 383 |
+
|
| 384 |
+
self._seq_len_cached = 0
|
| 385 |
+
self._cos_cached = None
|
| 386 |
+
self._sin_cached = None
|
| 387 |
+
self._cos_k_cached = None
|
| 388 |
+
self._sin_k_cached = None
|
| 389 |
+
self.cos = None
|
| 390 |
+
self.sin = None
|
| 391 |
+
|
| 392 |
+
def _compute_inv_freq(self, device=None):
|
| 393 |
+
return 1.0 / (
|
| 394 |
+
self.base
|
| 395 |
+
** (torch.arange(0, self.dim, 2, device=device) / self.dim)
|
| 396 |
+
# ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim)
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
def _update_cos_sin_cache(self, seqlen, position_id, device=None, dtype=None):
|
| 400 |
+
|
| 401 |
+
if (
|
| 402 |
+
seqlen > self._seq_len_cached
|
| 403 |
+
):
|
| 404 |
+
self._seq_len_cached = seqlen
|
| 405 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 406 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 407 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 408 |
+
if self.pos_idx_in_fp32:
|
| 409 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 410 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 411 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 412 |
+
# cos & sin output to change significantly.
|
| 413 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 414 |
+
if self.inv_freq.dtype != torch.float32:
|
| 415 |
+
inv_freq = self._compute_inv_freq(device=device)
|
| 416 |
+
else:
|
| 417 |
+
inv_freq = self.inv_freq
|
| 418 |
+
else:
|
| 419 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 420 |
+
inv_freq = self.inv_freq
|
| 421 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
| 422 |
+
if self.scale is None:
|
| 423 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 424 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 425 |
+
|
| 426 |
+
else:
|
| 427 |
+
power = (
|
| 428 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
| 429 |
+
- seqlen // 2
|
| 430 |
+
) / self.scale_base
|
| 431 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
| 432 |
+
# We want the multiplication by scale to happen in fp32
|
| 433 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 434 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 435 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 436 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 437 |
+
|
| 438 |
+
def forward(
|
| 439 |
+
self,
|
| 440 |
+
q: torch.Tensor,
|
| 441 |
+
k: torch.Tensor,
|
| 442 |
+
position_ids: torch.Tensor,
|
| 443 |
+
max_seqlen,
|
| 444 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 445 |
+
"""
|
| 446 |
+
q: (batch, nheads, seqlen, headdim)
|
| 447 |
+
k: (batch, nheads, seqlen, headdim)
|
| 448 |
+
position_id: (batch, seqlen)
|
| 449 |
+
max_seqlen: int
|
| 450 |
+
layer_id: int
|
| 451 |
+
only if layer_id == 0, then update cons and sin
|
| 452 |
+
Apply rotary embedding *inplace* to q k.
|
| 453 |
+
"""
|
| 454 |
+
|
| 455 |
+
self._update_cos_sin_cache(max_seqlen, position_ids, device=q.device, dtype=q.dtype)
|
| 456 |
+
cos, sin = F.embedding(position_ids, self._cos_cached), F.embedding(position_ids, self._sin_cached)
|
| 457 |
+
|
| 458 |
+
q = apply_rotary_emb_func(
|
| 459 |
+
q,
|
| 460 |
+
cos,
|
| 461 |
+
sin,
|
| 462 |
+
interleaved=self.interleaved,
|
| 463 |
+
inplace=True
|
| 464 |
+
)
|
| 465 |
+
k = apply_rotary_emb_func(
|
| 466 |
+
k,
|
| 467 |
+
cos,
|
| 468 |
+
sin,
|
| 469 |
+
interleaved=self.interleaved,
|
| 470 |
+
inplace=True
|
| 471 |
+
)
|
| 472 |
+
return q, k
|
visual.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from argparse import Namespace
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from transformers.activations import ACT2FN
|
| 6 |
+
import math
|
| 7 |
+
|
| 8 |
+
def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True):
|
| 9 |
+
if scaling_attention_score:
|
| 10 |
+
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
|
| 11 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 12 |
+
|
| 13 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
| 14 |
+
|
| 15 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 16 |
+
return context_layer
|
| 17 |
+
|
| 18 |
+
def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True):
|
| 19 |
+
# expand head dim to query dim, if necessary
|
| 20 |
+
# only useful for multi-query attention
|
| 21 |
+
batch_size, num_query_heads = query_layer.shape[:2] # [b, np, s, hn]
|
| 22 |
+
num_kv_heads = key_layer.shape[1] # [b, np, s, hn]
|
| 23 |
+
key_layer = key_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *key_layer.shape[2:])
|
| 24 |
+
value_layer = value_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *value_layer.shape[2:])
|
| 25 |
+
|
| 26 |
+
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score:
|
| 27 |
+
# Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
|
| 28 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 29 |
+
query_layer, key_layer, value_layer,
|
| 30 |
+
attn_mask=None,
|
| 31 |
+
dropout_p=0.,
|
| 32 |
+
is_causal=False
|
| 33 |
+
)
|
| 34 |
+
return attn_output
|
| 35 |
+
else:
|
| 36 |
+
return standard_attention(
|
| 37 |
+
query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
class PatchEmbedding(nn.Module):
|
| 41 |
+
def __init__(self, config):
|
| 42 |
+
super().__init__()
|
| 43 |
+
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
|
| 44 |
+
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
|
| 45 |
+
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
|
| 46 |
+
|
| 47 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
| 48 |
+
x = self.proj(images)
|
| 49 |
+
x = x.flatten(2).transpose(1, 2)
|
| 50 |
+
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
|
| 51 |
+
x = torch.cat((cls_token, x), dim=1)
|
| 52 |
+
x += self.position_embedding.weight.unsqueeze(0)
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Attention(nn.Module):
|
| 57 |
+
def __init__(self, config):
|
| 58 |
+
super().__init__()
|
| 59 |
+
self.num_heads = config.num_heads
|
| 60 |
+
head_dim = config.hidden_size // config.num_heads
|
| 61 |
+
self.scale = head_dim ** -0.5
|
| 62 |
+
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
|
| 63 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 64 |
+
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
|
| 65 |
+
|
| 66 |
+
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
|
| 67 |
+
B, L, _ = x.shape
|
| 68 |
+
qkv = self.query_key_value(x)
|
| 69 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, H, L, D
|
| 70 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 71 |
+
|
| 72 |
+
out = attention_fn_default(
|
| 73 |
+
q, k, v
|
| 74 |
+
) # 24 x 3 x
|
| 75 |
+
out = out.transpose(2, 1)
|
| 76 |
+
# breakpoint()
|
| 77 |
+
# output = self.dense(out.reshape(B, L, -1))
|
| 78 |
+
output = self.dense(out.view(B, L, -1))
|
| 79 |
+
output = self.output_dropout(output)
|
| 80 |
+
return output
|
| 81 |
+
|
| 82 |
+
def attention(self, q, k, v):
|
| 83 |
+
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
|
| 84 |
+
attn_weights = attn_weights.softmax(dim=-1)
|
| 85 |
+
output = torch.matmul(attn_weights, v)
|
| 86 |
+
return output
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class MLP(nn.Module):
|
| 90 |
+
def __init__(self, config):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.config = config
|
| 93 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 94 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 95 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 96 |
+
|
| 97 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 98 |
+
x = self.fc1(x)
|
| 99 |
+
x = self.activation_fn(x)
|
| 100 |
+
x = self.fc2(x)
|
| 101 |
+
return x
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class TransformerLayer(nn.Module):
|
| 105 |
+
def __init__(self, config):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 108 |
+
self.attention = Attention(config)
|
| 109 |
+
self.mlp = MLP(config)
|
| 110 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 111 |
+
|
| 112 |
+
def forward(self, hidden_states):
|
| 113 |
+
attention_input = hidden_states
|
| 114 |
+
attention_output = self.input_layernorm(self.attention(attention_input))
|
| 115 |
+
hidden_states = attention_input + attention_output
|
| 116 |
+
mlp_input = hidden_states
|
| 117 |
+
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
|
| 118 |
+
output = mlp_input + mlp_output
|
| 119 |
+
return output
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class Transformer(nn.Module):
|
| 123 |
+
def __init__(self, config):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
|
| 126 |
+
|
| 127 |
+
def forward(self, hidden_states):
|
| 128 |
+
for layer_module in self.layers:
|
| 129 |
+
hidden_states = layer_module(hidden_states)
|
| 130 |
+
return hidden_states
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class GLU(nn.Module):
|
| 134 |
+
def __init__(self, config, in_features):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
|
| 137 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
| 138 |
+
self.act1 = nn.GELU()
|
| 139 |
+
self.act2 = nn.functional.silu
|
| 140 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 141 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 142 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 143 |
+
|
| 144 |
+
def forward(self, x):
|
| 145 |
+
x = self.linear_proj(x)
|
| 146 |
+
x = self.act1(self.norm1(x))
|
| 147 |
+
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
|
| 148 |
+
x = self.dense_4h_to_h(x)
|
| 149 |
+
return x
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class EVA2CLIPModel(nn.Module):
|
| 153 |
+
def __init__(self, config):
|
| 154 |
+
super().__init__()
|
| 155 |
+
vision_config = Namespace(**config.vision_config)
|
| 156 |
+
self.patch_embedding = PatchEmbedding(vision_config)
|
| 157 |
+
self.transformer = Transformer(vision_config)
|
| 158 |
+
self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
|
| 159 |
+
self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=vision_config.hidden_size, kernel_size=2, stride=2)
|
| 160 |
+
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
| 161 |
+
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
| 162 |
+
|
| 163 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
| 164 |
+
x = self.patch_embedding(images)
|
| 165 |
+
x = self.transformer(x)
|
| 166 |
+
x = x[:, 1:]
|
| 167 |
+
b, s, h = x.shape
|
| 168 |
+
grid_size = int(s**0.5)
|
| 169 |
+
x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
|
| 170 |
+
x = self.conv(x)
|
| 171 |
+
|
| 172 |
+
x = x.flatten(2).transpose(1, 2)
|
| 173 |
+
x = self.linear_proj(x)
|
| 174 |
+
boi = self.boi.expand(x.shape[0], -1, -1)
|
| 175 |
+
eoi = self.eoi.expand(x.shape[0], -1, -1)
|
| 176 |
+
x = torch.cat((boi, x, eoi), dim=1)
|
| 177 |
+
return x
|