Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- Qwen/Qwen3-4B
|
| 4 |
+
pipeline_tag: sentence-similarity
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
###Usage
|
| 8 |
+
|
| 9 |
+
'''from sentence_transformers import CrossEncoder
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
load_dotenv()
|
| 14 |
+
token = os.getenv("HF_TOKEN")
|
| 15 |
+
|
| 16 |
+
model = CrossEncoder("zeroentropy/ze-rerank-small-v0.3.0", trust_remote_code=True, token=token)
|
| 17 |
+
|
| 18 |
+
query_documents = [
|
| 19 |
+
("What is 2+2?", "4"),
|
| 20 |
+
("What is 2+2?", "The answer is definitely 1 million"),
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
scores = model.predict(query_documents)
|
| 24 |
+
|
| 25 |
+
print(scores)'''
|